UW Physics


Physics 406 Quantum physics of information technologies

2018, spring semester

T,Th  11:00-12:15 in Chamberlin 2223

Final exam May 7, 2:45-4:45 pm

Office hours: M 9-10, F 9-10 or by appointment, or just stop by. 

(Refresh page to see updates, it may also be necessary to clear browsing data)

Mark Saffman
Department of Physics
office: 5330 Chamberlin
tlf: 265 5601
email: msaffman@wisc.edu
web: hexagon.physics.wisc.edu

Course description: This course will explore applications of quantum theory to the hardware and software that underpin modern information technology. course flyer

Course listing in UW timetable.

Homework is an important part of the course and accounts for 50% of your grade. Working problems is an integral part of learning physics, and will also give you practice in applying mathematical methods.

You are welcome to work together on homework, however you must turn in your own solutions - not a Xerox copy of someone else's. Late homework will not be accepted unless prior approval has been given. Assignments and solutions will be provided by email.

Course textbook: An introduction to Quantum Computing by Kaye, Laflamme & Mosca. Not required but highly recommended. Class notes wil be provided.

Useful references will be put on course reserves.

Course project

Books on quantum information(updated 2017.12.11)

Syllabus (subject to change):

Required information:

1. The course learning outcomes are that students will learn how to analyze the functionality of quantum computational circuits. Students will also learn the operational principles of different hardware implementations of quantum logic.

2. This is a 3 credit course.

3. The course meets the credit hour policy standards through weekly lectures, weekly homework, a course midterm, and a final written and oral project.

QIP primer (updated 2018.03.15)

last updates in Syllabus 2018.03.15

week lecture   date topic

reading in QIP primer

reading in KLM HW out HW due
1 1 T Jan 23 Introduction, computational complexity, complexity of factoring ch. 1,2 ch.1,2,9.1 1  
  2 Th Jan 25 quantum advantage, rules of Q.M., qubits, one-qubit gates   ch.3,4    
2 3 T Jan 30 two-qubit gates, Clifford group, Gottesman-Knill, no cloning, ch. 3 ch. 6 2 1
  4 Th Feb 1 measurements, Deutsch-Jozsa algorithm, quantum search   ch.8    
3 5 T Feb 6 finish quantum search, mathematica code for circuit simulation, QFT circuit, phase estimation   ch.7 3 2
  6 Th Feb 8 factoring algorithm, start density matrices ch. 4,5      
4 7 T Feb 13 continue density matrices, entanglement, entanglement measures ch. 6,7   4 3
  8 Th Feb 15

Bell inequalities, Tsirelson bound. Classical channel capacity, Shannon's coding theorem, quantum channel capacity

ch.8 ch. 5    
5 9 T Feb 20 superdense coding, state teleportation, gate teleportation, QKD, QKD with entanglement     5 4
  10 Th Feb 22 Probability distributions, T1 and T2 coherence. qubits and noise ch. 9      
6 11 T Feb 27 finish qubits and noise. Master equation. quantum processes, Kraus operators. ch.10,11   6 5
  12 error correction notes Th Mar 1 Tomography of states and processes, bench marking. Quantum error correction part I ch.12 ch. 10    
7 13 T Mar 6 review for midterm, classical error correction       6
    Th Mar 8 Midterm in class        
8 14 T Mar 13 classical error correction part 2, quantum error correction     7  
  15 Th Mar 15 solve midterm, fault tolerance. Hardware, DiVincenzo criteria.        


T Mar 20 harmonic oscillator, field quantization, CQED     8 7
  17 Th Mar 22 QC with ions        
      Mar 24-Apr 1 Spring Recess        
10 18 T Apr 3 ions continued     9 8
  19 Th Apr 5 QC with neutral atoms        
11 20 T

Apr 10

neutral atoms continued     10 8
  21 Th Apr 12 QC with superconductors        
12 22 T Apr 17 superconductors continued     11 10
  23 Th Apr 19 QC with quantum dots        
13 24 T Apr 24 QC with photons     12 11
  25 Th Apr 26 photons continued        
14 26 T May 1 hybrid systems       12
  27 Th May 3 adiabatic QC, quantum simulation outlook        
    M May 7 Presentation of class projects 2:25-4:25        

Grading: HW 50%, midterm 17%, final project 33%



Reference Notes:

Quantum mechanics primer (updated 2016.09.27)

Mathematica definitions (updated 2018.02.06)

Atomic notes (updated 2017.12.05)

Optics notes (updated 2017.05.04)

Mathematical formulae (updated 2017.09.28)

Physical constants (updated 2015.09.03) if you want all the details here are the CODATA 2010 recommended values

Quantum Information on the web:

Preskill course, Brun course, Vazirani course

Quantum algorithm zoo

Complexity zoo


APS division of quantum information

Timeline of quantum computing

Reversible circuit library

Some interesting papers related to the course:

(these references are not meant to be complete but to provide useful entrance points to the literature)

Early ideas:

Landauer, Irreversibility and computation 1961

Bennett, thermodynamics of computation 1982

Benioff, Quantum Turing machine 1982

Feynman, Quantum simulators 1982

Feynman, Quantum mechanical computers 1986

Deutsch, Quantum Turing machine 1985



EPR 1934, Bohr, reply to EPR 1935, Schrodinger 1935 1936, Bell on EPR 1964, CHSH form of Bell inequality 1969

Freedman, Clauser experiment 1972, Aspect experiment, time varying analyzers 1982

Werner, classical and quantum correlations 1989

GHZ states 1990

Ekert, et al., entanglement swapping 1993

Kwiat, Hardy, baking cakes 2000

Bell test with locality loophole closed using photons Zeilinger, et al., 1998, freedom of choice loophole closed 2010

Belll test with sampling loophole closed using ions 2001, superconductors 2009, atoms 2012, photons 2013

Belll test with locality and sampling loopholes closed spins in diamond 2015, photons 2015, photons 2015


Entanglement Measures and Detection:

Peres, positive partial transpose 1996

3 x Horodecki, positive partial transpose 1996

Wootters, entanglement of formation 1998 , 2001

4 x Horodecki, entanglement review 2009

Guhne, Toth, entanglement detection review 2009


No cloning:

Wootters and Zurek 1982, Dieks 1982


Quantum Communication:

Wilde, Classical to Quantum Shannon theory prepublication draft of his book) 2013

Bennett, Brassard BB84 1984

Ekert, E91 1991

Bennett, Wiesner, superdense coding 1992

Bennett, et al., teleportation 1993

Zeilinger, et al., superdense coding experiment 1996

teleportation experiments 1997-2006, 143 km experiment Zeilinger group 2012, 143 km teleportation of entanglement Zeilinger group 2015

Review of teleportation experiments Braunstein, et al. 2015

experimental E91 QKD Zeilinger group, 2000 , Kwiat group 2000

DLCZ, quantum repeaters 2001

Gottesman Chuang, et al., teleportation of gates 1999 2000

Guo, gate teleportation experiment 2004

Kurtsiefer, et al., faking Bell test with classical light and loopholes open 2011

Gisin, et al., quantum repeaters review 2011

Gisin, et al., QKD review 2002

Scarani, et al., QKD security review 2009


Circuit model quantum computing and Gate Sets:

DiVincenzo, 2-bit universal gate 1995

Sleator, Weinfurter, 2-bit universal gate 1995

Barenco, et al. Universal Gates 1995

Aaronson, Gottesman Clifford gate simulations 2004

Dawson, Nielsen, on the Solovay-Kitaev algorithm 2006


Dynamical decoupling, DFS, composite pulses:

Spin echo Hahn 1950

Spin echo for qubits Vitali Tombesi 1999

DFS review Lidar Whaley 2003

Composite pulses Wimperis 1994

Composite pulses with arbitrary accuracy 2004


One way quantum computing:

Raussendorf, Briegel, original theory PRL 2001, PRA 2003

Kok, lecture notes 2007

Zeilinger, et al., experiment 2005

universal gate set experiment 2013

error correction experiments 2012, 2014


Adiabatic quantum computing:

Farhi, et al, adiabatic qc 2001

Equivalence to circuit model QC 2007

Error correction in adiabatic QC 2013, 2014

D-Wave quantum speedup ? 2014



Deutsch 1985, Deutsch Jozsa 1992, Simon 1994, 1997,

Shor 1994

Design of the Shor circuit: Preskill et al., 1996,van Meter 2005, Pavlidis 2014

Order finding success estimate Bourdon and Williams 2005

Bernstein Vazirani 1997 version

Grover search 1997

Schaller and Schutzhold, adiabatic factoring 2010


Algorithms - Experimental Demonstrations:

Deutsch-Jozsa trapped ions n=1 2003 , superconducting qubits n=1 2009, fiber optics n=3 2003 , photonic cluster state n=2 2010

Modified Simon problem, adiabatic version 2013

Quantum phase estimation, photons 2013

Semi-classical QFT 3 qubits Wineland 2005

Shor, factoring 15 NMR 2001 , Photons 2009, Superconductors 2012, over simplifications 2013, ions 2016

Grover, 2 trapped ion qubits 2005, 2 superconducting qubits 2009, 3 trapped ion qubits 2017


Quantum Simulation:

Feynman, Quantum simulators 1982

Lloyd, simulating local Hamiltonians 1996

Aspuru-Guzik, computing molecular energies 2005

Jordan, Lee, Preskill, simulating field theories 2012

Cirac, Zoller, overview 2012

Zoller, et al. lattice Schwinger model 2013


Quantum Simulation Experiments:

Blatt, et al. simulating Dirac equation 2010

White, et al. simulating H2 energy spectrum 2010

Blatt, et al. dissipative quantum simulator 2011

Monroe, et al. frustrated magnetism 2013


Quantum Sensors:

Optical atomic clocks 2015


Hardware approaches for quantum computing:

DiVincenzo criteria 2000

Ladd, et al overview as of 2010

Nori, et al. comparative review 2011

Paladino, et al. qubits and 1/f noise, review 2014


KLM, linear optics 2001

Kok, et al. review 2007

Demonstration of KLM CNOT gate 2010

Entanglement of 8 photons 2012, 10 photons 2016

Nonlinear photon-photon phase shift of 16 deg. 1995, photon-photon phase gate 2016

Neutral atoms:

Dipole-dipole gate 1999, Collisional gate 1999, Rydberg gate 2000

Bloch, atoms in optical lattices review 2008

Rydberg approach review 2010, status in 2016

Trapped ions:

original proposal Cirac Zoller 1995

Mølmer Sørensen gate 1999

Wineland, trapped ion gate (spin-motion) 1995, Blatt, trapped ion gate (spin-spin) 2003

Blatt, high fidelity M-S gate 2009, 14-qubit GHZ state 2011

Very high fidelity entangling gates F>=0.999 Oxford 2016, Boulder 2016

Reviews: Wineland et al. 1998, Leibfried, Blatt Monroe Wineland 2003, Eschner 2006, Blatt et al 2008

Quantum dots:

Loss DiVincenzo proposal 1998

Kane proposal 1998

Hanson, et al. review 2007

Silicon quantum dots review 2013


Clarke, Wilhelm review 2008

Martinis, phase qubit review 2009

Girvin, superconducting qubits and circuits review 2011

Nori, et al. superconducting hybrid circuits 2013

Yale, two-qubit algorithms 2009

Martinis, experiments with 5 - 2014 and 9 - 2015 qubits

Spins in diamond:

Doherty, et al. review 2013

Munro, et al. scalable architecture 2014

Error correction:

Hamming, classical error correcting codes 1950

Shor 9 bit code 1995, Steane 7 bit code 1996, Laflamme et al 5 bit code 1996

Bacon subsystem codes 2006


Steane 1998, Nayak et al, topological QC 2008, Gottesman 2009, Devitt et al 2013, Terhal 2014

Magic state distillation:

Bravyi and Kitaev 2005, Bravyi and Haah 2012, with Clifford errors 2013

Transversal universal QC:

Eastin and Knill no go theorem 2009

Paetznick and Reichardt 2013, Jochym-O'Connor and Laflamme 2014, Poulin group 2014

Surface code:

Bravyi and Kitaev 1998, Raussendorf 2007, Fowler 2009, 2012


random benchmarking, Knill, et al. 2008



Links to useful information:

Periodic table

NIST, Physical reference data

NIST Atomic Spectroscopy reference

Harvard CFA databases

Wikipedia - atomic physics

Physics World

Math World

Wolfram function site

Digital library of mathematical functions

Abramowitz & Stegun Handbook of Mathematical Functions

Integrals on the web

Clebsch-Gordan calculator

6j symbol calculator

Matrix solver for linear equations on the web