The Lamb shift in H is not the end of the story.

In H the self-energy diagram dominates, vacuum-polarization is a small correction.

Muonic hydrogen is a proton + muon, μH.

For μH self-energy is small, V-P is large.

μH = p + μ, μ has charge -e

\[m_\mu \approx 207 \text{ me} \]

so,
\[a_{\mu} = 4\pi \alpha_0 \frac{\hbar^2}{m_\mu e^2} = \frac{me}{m_\mu} \alpha_0 \approx \frac{\alpha_0}{207} \]

reduced mass

The length scale of the vacuum polarization is

\[\chi_c = \frac{\hbar}{m_\mu e} = \alpha \frac{\alpha_0}{m_\mu} \approx \frac{\alpha_0}{207} \]

small effect in H.

In μH, \[\frac{\chi_c}{a_{\mu}} = \frac{\alpha \alpha_0}{a_{\mu}} = \frac{\alpha_0}{a_{\mu} m_\mu} \approx \frac{\alpha_0}{m_\mu} \approx 1.4 \]
Thus, V-P is very important.

To calculate the shift need field theory, out of scope for this course.

Nonetheless let's look at the scalings.

\[
\begin{align*}
2s_{\frac{1}{2}} - 2p_{\frac{1}{2}} & \quad \mu H \quad \Delta E_{\mu H} / \Delta E_H \\
\Delta E_{\text{self-energy}} & \quad +1.6 \text{ GHz} \quad +300.6 \text{ GHz} \quad \text{m\mu/m}\epsilon \\
\Delta E_{\text{vacuum-polarization}} & \quad -27 \text{ MHz} \quad -49.600 \text{ GHz} \quad (\text{m\mu/m}\epsilon)^3 \\
\end{align*}
\]

\[
\Delta E_{v-p} = \frac{2^3}{11 \pi} \frac{E_{\mu H}}{n^2} \left(\frac{-4}{15} S_{20} \right)
\]

\[
= \frac{-8}{15} \frac{2^3}{n^3} E_{\mu H} S_{20} + \text{higher order terms}
\]

\[
E_{\mu H} \sim 207 E_H
\]

The \(S_{20} \) term picks out s-states, as in the Darwin term calculation.
Recall

\[|\psi(0)|^2 = \frac{1}{\pi a_0^3 n^3} \sim \frac{m_e}{m_u} \]

\[\text{in } \mu H \quad |\psi(0)|^2 \sim \frac{m_e}{m_u} \]

So we get a larger effect \(\sim \left(\frac{m_u}{m_e} \right)^3 \sim 10^7 \)

The Lamb shift in \(\mu H \) was measured,

R. Pohl, et al. "The size of the proton"

Nature, 466, 213 (2010).
So why was the experiment measurement of the Lamb shift in μHz called "size of the proton"?

Theory says that, if we include proton size effects, then

$$\Delta E_{\text{Lamb}} = 209 - 5.2 \, r_p^2 + 0.03 \, r_p^3 + \ldots \text{meV}$$

$$r_p = \sqrt{2r_p^2}$$ is the charge radius of the proton.

The 2010 experiment implied a value for r_p that disagrees by 566 from the 2006 CODATA value.

Work is ongoing ---