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The problem of particle number density measurements with a laser Doppler anemometer is addressed.
Analytical expressions for the instrument measurement cross section are given. An automatic calibration
method for determining unknown scattering parameters, which promises good accuracy in changeable optical
conditions, is described. Estimates of the measurement uncertainty are derived and the method is extended
to uses in 2-D flow fields.

1. Introduction

Laser Doppler anemometry (LDA) is a well-estab-
lished diagnostic for nonintrusive fluid flow measure-
ments. The method can also be extended to include
particle size measurements using various tech-
niques,lA such as signal intensity, modulation depth,
or phase. In many uses it is also necessary to measure
particle number density, which requires knowledge of
the instrumental measurement volume size. Due to
the Gaussian light distribution of laser beams, the
variation of scattering cross section with particle size
and optical losses caused by variable measurement
conditions, accurate number density measurements
are difficult and have rarely been reported in the liter-
ature.

A new method of automatically determining the
measurement volume on-line without the necessity of
calibrating with known particle sizes and/or number
densities is described. The method dynamically
adapts to changing measuring conditions and is gener-
ally adaptable to any type of combined LDA particle
sizing instrument, although it will be described in con-
nection with the phase method of particle sizing.

The optical geometry is described followed by a brief
review of previous calibration methods and a descrip-
tion of an automatic method based on burst length
measurements. A number of potential error sources
are identified, error bounds are given, and it is shown
how the method can be modified for measurements of
2-D flow fields.
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II. Optical Geometry

The optical geometry of the LDA measurement vol-
ume is shown in Fig. 1. The intersection of the cross-
ing region of the two incident laser beams and the
region which is imaged onto the collection optics spa-
tial filter defines the measurement volume. The light
intensity distribution in the measurement volume is a
sinusoidal interference pattern with an envelope
which, to a good approximation, is a Gaussian function
of the radial distance and a Lorentzian along the beam
bisector. We take a collection direction perpendicular
to the bisector of the incident beams and use a spatial
filter in the form of a narrow slit parallel to the X axis
and can therefore neglect the light intensity variation
along the Z axis.

With the assumption of 1-D flow along the X axis the
problem of determining the measurement volume re-
duces to finding the measurement cross section per-
pendicular to the X axis, and the particle number
density is given by

pho(D) = R(D)/[U(D)A(D)], (1)

where pho, R, U, and A are, respectively, the number
density per unit volume [#/M**3], the data rate per
second [#IA], the velocity [M/s], and the measurement
cross-sectional area [M**2], all of which are functions
of the particle diameter. R and U are measured and it
remains to determine A(D). It is apparent that Eq. (1)
is valid only when the number density and measure-
ment volume are such that individual particles are
detected, i.e., there is small probability of multiple
probe volume occupancy.

The signal level and duration due to a single particle
passing the measurement volume depend on the laser
power, test cell optical losses, particle density, system
geometry, electronic gain, particle size, shape, refrac-
tive index, and trajectory. The incident light level
decreases as the particle trajectory moves away from
the center of the measurement volume, and the parti-
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Fig. 1. Measurement volume geometry.

cle scattering cross section increases as the particle size
increases so that the area giving usable signals in-
creases with particle size. Accurate measurements of
relative size distributions require correction for the
size-dependent cross-sectional bias, and absolute
number density measurements require absolute
knowledge of the cross-sectional area. The envelope
of the electronic signal due to a particle of diameter D
at position xy can be written

V(D,x,y) = G*s(D)*Io exp-[8y 2/d2 + 8x2 cos2(0/2)/dy2]p, (2)

where is the beam crossing angle, dy is the Gaussian
spot diameter, Io is the incident intensity at x = y = 0,
s(D) is a generalized scattering cross section that de-
pends on the particle characteristics and size and the
position and size of the collection aperture, and G is an
electronic gain factor accounting for detector quantum
efficiency and detector and amplifier gains. With our
assumption of 1-D flow the x coordinate is related to
the particle velocity by x = U(t - to) where to is the
time when the particle passes the y-z plane.

Electronic processors used for LDA measurements
in situations where the probability of multiple occu-
pancy of the measurement volume is low (sparsely
seeded flows) typically include a circuit generically
known as a burst detector. The burst detector deter-
mines when a signal is present which the rest of the
instrument can analyze for velocity and size informa-
tion. Burst detectors, which are used with counter
type LDA processors, generally require a minimum
number of signal periods above a fixed trigger level.
We denote the trigger level as Vt and the required
number of signal periods as No, so the condition for a
signal of sufficient amplitude and duration is

Vt _ Vm(D) expH-[8y 2/dy 2 + 2(No/Nf)2 ]}, (3)

where Vm(D) = Gs(D)Io is the maximum signal level at
the center of the burst and Nf = cos(0I2)dyIdf is the
number of fringes inside the Gaussian envelope (df
being the fringe spacing). We note that if the number
of signal periods greatly exceeds No, the particle will
still only be measured once due to logical checks in the
burst detector circuitry. The maximum trajectory
displacement Ym can then be solved for as

ym(D) = (dy/2V2)Rn[Vm(D)/Vt] - 2(N 0/Nf) 2 j"l2, (4)

and the measurement cross section is given by

35.00 49.00 63.00
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Fig. 2. Family of curves showing the dependence of cross section on
diameter. The parameters are defined in the text and the curves are

labeled with the value of Nf.

A(D) = 2 *Zp*Ym(D)

= (zpdy/V2)*1ln[Vm(D)/Vt] - 2(N01Nf)'}l12, (5)

where zp is the length along the Z axis of the image of
the collection optics spatial filter. All the parameters
in the expression for the cross section are known from
the optical and electronic system parameters except
for V(D) which must be measured. To get a feeling
for how the burst length and cross section vary with
particle size we can assume V(D) D2, which gives
the family of curves shown in Fig. 2. The normalized
diameter is DIDO, where V(DO) = Vt, the normalized
cross section is A(D)/zpdy, and we have set No = 8. We
note that, if it is desired to reduce the dependence on
the particle diameter, Nf/No should be greater than
-1.5 and [Vm(D)]IVt should be greater than '100.
The last requirement is generally not practical and
there will be a noticeable bias in favor of the larger
particles.

Ill. Previous Calibration Methods

It has been recognized for many years that optical,
particle, and electronic parameters all interact to de-
termine the cross-sectional size (see, for example, Refs.
5 and 6) and formulas equivalent to Eq. (5) have been
derived previously. The formula has typically been
implemented in one of two ways.

The cross-sectional area which gives accepted sig-
nals can be directly measured using a wire or other
scattering center mounted on a traversing stage. At
the same time a calibration value of V can be mea-
sured. The change in V, which should be used when
measuring in a flow field, can then be estimated analyt-
ically taking account of changes in particle characteris-
tics and optical conditions, and Eqs. (1) and (5) can
then be used for absolute measurements.

Alternatively, if a monodisperse flow with a known
number density and particle size is available this can
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be used as a calibrating device for the cross section
using Eq. (1). The change in cross section for other
particle sizes can then be analytically determined
based on Mie scattering calculations or by simply as-
suming a scattering cross section proportional to the
particle diameter squared.

In principle these methods can be used as a basis
for accurate measurements. In practice they require
inordinate care on the part of the experimentalist,
precise definition of the optical geometry, and very
careful attention to changes between laboratory and
field measurement conditions. Well-documented
measurements of number densities, in flow fields with
large variations in particle size, have, to the authors'
knowledge, not been reported.

IV. Automatic Calibration Method

To overcome these practical difficulties an in situ
automatic calibration method is required. Such a
method should be based as little as possible on analytic
models and as much as possible on the actual signals
detected. If this is the case it should also be possible to
account for changing optical conditions during a mea-
surement. Number density measurements using a
method presumably similar to that described in the
following have recently been reported7 although no
details are given.

Looking back at Eq. (5) the only unknown parame-
ter is Vm(D). If this could be determined in situ based
on the actual measured signals, Eq. (5) could be reli-
ably used. The immediate difficulty is that only
V(D,x,y) or V'(Dy) = V(D,x = ,y), the maximum
amplitude at the center of the burst, which depends on
the particle trajectory, can be directly measured.
However, the distribution of the measured values of V'
can be statistically related to the actual value of
Vm(D). If the size measurement is independent of the
signal amplitude, such as is the case with the phase
method, and if the dimensions of the measurement
cross section are smaller than the characteristic di-
mensions over which the flow field changes significant-
ly so that a particle has equal probability of crossing
any part of the measurement cross section, the mea-
sured V' values can be directly averaged without any
additional, unknown weighting function.

The unknown value of Vm can then be related to the
measured average value of V' using Eqs. (2) and (4).
Unfortunately the averaging process gives results pro-
portional to error function integrals so there is no
simple closed form solution for Vm. The problem can
be solved by measuring the average value of V' and
then relating Vm to the percentage of the measure-
ments which are greater than or less than the average
value. This works but requires a larger number of
measurements for good statistical accuracy than would
direct use of the average value. Furthermore, the
requirement on the dynamic range of the electronics is
stringent since for a particle diameter variation of 40
the signal can vary by a factor of up to 1600.

There is an alternative approach which is more easi-
ly implemented and can be solved in closed form. The

burst length can be defined geometrically as the num-
ber of signal periods above the burst detector trigger
level multiplied by the fringe spacing. This can be
expressed as

L(D,y) = (dy/\/2 cos(0/2)) * ln[Vm(D)/VtI - 8y2Idy}l"2 . (6)

The average value of the measured burst lengths can
then be used to give V. This again gives algebra
which cannot be solved in closed form but if we average
over the burst length squared we have

(L 2 (D)) = (ym) f L2 (Dy)dy

= (1/3)[d2/cos 2
(0/2)11n[Vm(D)/Vt] + (NO/Nf)2 1.

(7)

(8)

Solving for Vm and using Eq. (5) then gives

A(D) = (3/2)/2z dylcos2(0/2)[(L2(D) /d2]-(N/N) 2 "2 (9)

This is the basic result for in situ cross-sectional cali-
bration. We note that since we now average over burst
length the method can also be used with sizing tech-
niques that depend on the signal amplitude and, since
A(D) does not explicitly depend on D, the number
density of monodisperse flows can be measured with-
out knowledge of the particle size.

The method automatically accounts for changing
optical conditions during a measurement in the follow-
ing sense. Consider, for example, some flow in a test
cell where the windows become progressively dirtier
during the measurement. This has two effects: R(D)
will be reduced due to the reduced signal levels and
hence smaller number of accepted signals, and (L2(D))
will also be reduced. These two quantities appear in
both the numerator and denominator of Eq. (1) so the
effects should tend to cancel out, provided the number
of measurements is sufficient to give a good statistical
estimate of (L2(D)). The requirement on the number
of measurements will be evaluated below.

V. Error Estimates

We derive here estimates for the accuracy of this
type of number density measuring technique. The
relevance of such error or uncertainty estimates will
depend on the measurement conditions, signal quality,
care taken by the experimentalist, etc. It is only possi-
ble to make precise predictions of the measurement
uncertainty by referring explicitly to a specific mea-
surement situation. The intention of this section is to
show that it is possible to obtain rms uncertainties of
the order of 10% in realistic conditions and to estimate
the number of measurements necessary for good statis-
tical accuracy.

The number density which is defined by Eq. (1) is a
function of three independent parameters. Each of
these parameters has various uncertainties associated
with it, although the highest uncertainty level will
invariably be associated with the measurement cross
section. The particle arrival rate R can be assumed to
be accurately measured provided that the inverse of
the instrument dead time associated with a single mea-
surement is much larger than the mean particle arrival
rate. Furthermore, since the particle arrival statistics
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Fig. 3. Normalized variance of the burst length m
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are generally Poisson distributed, the number of parti-
cles counted in each size class should be at least 100 for
10% accuracy. The velocity is typically measured to
an accuracy of several percent when using a LDA in
favorable conditions and is not an important error
source in this connection.

The cross section as described by Eq. (9) depends on
five independent parameters, No, , dy, z,, and (L2),
which are listed in an order indicating increasing levels
of uncertainty. (Nf is not independent if 0 and dy are
known, since the laser wavelength is always known to a
very high accuracy.) The uncertainties associated
with each of these parameters will now be briefly de-
scribed. The number of signal periods required by the
burst detector is very well defined electronically and,
provided the signal-to-noise ratio is good, this condi-
tion will be met by all the accepted signals. For low
signal-to-noise ratios the effective value of No will tend
to fluctuate and increase the measurement uncertain-
ty. The beam crossing angle is well defined by the
optical setup and can be easily measured to a few
percent accuracy, or to a very high accuracy with a
good deal of effort. The Gaussian spot diameter de-
pends on the beam diameter of the laser being used and
on the relay and focusing lenses in the optical system.
Laser manufacturers typically specify the beam diam-
eter to better than 10% accuracy, and if care is taken in
placing the beam waist at the beam crossing point, the
spot size will also be known to about this accuracy.
Alternatively the spot size can be easily measured with
commercial beam scanning devices to an accuracy of
just a few percent. The effective axial length of the
collection optics spatial filter is well defined, given the
magnification of the collection optics, but there will
always be a blurry region at the edges of the area
defined by the spatial filter giving some uncertainty as
to the effective size. With a spatial filter of character-
istic dimension (100 ,m), the blurry region can in any

case be restricted to a <5% effect. We have also as-
sumed that the light intensity does not vary with the z
coordinate. This will be determined by the ratio of zP
to the length of the intensity envelope along the z axis.
If we match zP to the spot diameter dy, the ratio of zp to
the z envelope length is given approximately by sinO/2.
If 0 does not exceed 20°, which is almost always the
case in practice, the intensity will only have fallen by
-6% at z = zp/2, which gives an error of similar size to
the other uncertainties.

The remaining parameter is (L2) which is measured
in a statistical sense. To ensure a good estimate of
(L2), all parts of the measurement cross section must
be sampled, i.e., a large number of particles must be
measured. Since the value of L2 decreases quadrati-
cally with the trajectory offset y, equal intervals in L
correspond to progressively smaller intervals in y, and

26.00 30 00 the requirement on the number of measurements per
size class for a desired statistical uncertainty should be

easurement as a checked. We approximate Eq. (7) by
asses. (L2) = (N)2L~n,

= (N)ZL 2 (yi)n(yi)

= (bL/ym)ZL2(yj)1I(aL/lylyi). (10)

Where we have used n(yj) = N6yilym, the byi = L9LI
dylyi), L is the spread in L per measured class, and N
= 2ni is the number of measurements with diameter D.
The normalized variance of the burst length measure-
ment can then be written as

= (1/N) L4(y,)1/(aL/yly,) (11)
[2L2(y,)1(aL10yy,)12

Here we have assumed Poisson particle arrival statis-
tics so the variance of the number of particles in each
burst length class is given by the expected mean.
Equation (11) can be evaluated by assuming a fixed
number of classes and approximating the summations
by integrals, using Eq. (6) for L(y). The results, ex-
pressed as a normalized variance vs the number of
burst length classes, are shown in Fig. 3 forN = 100 and
NoINf = 0.5. We see that the uncertainty decreases as
the number of burst length classes and Vm/Vt increase
and that 100 measurements per size class is sufficient
for <10% uncertainty. Since flows with a wide size
distribution may require up to 100 size classes for good
resolution, we need the order of 10,000 measurements
to accurately characterize the flow at a single point in
space.

VI. Extension to 2D Flows

In many uses the particle velocity is a 2-D or 3-D
vector quantity, and it is not sufficient to consider only
the component parallel to the x axis. In general the
relationship between burst length L and Vm [Eq. (6)]
must be modified to take account of the trajectory
direction. To keep the algebra compact and because it
is sufficient for a large number of applications, we
restrict ourselves to 2-D velocities in the x-y plane.

If we consider again the distribution of trajectories
throughout the measurement cross section, there are
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Fig. 4. Two-dimensional trajectories.

now two parameters that must be averaged over for
each size class. These are shown in Fig. 4 as r, the
radial trajectory offset from the point x = y = 0, and y,
the angle which the trajectory makes with the x axis.
If the measuring system includes a second channel for
measurement of the y velocity component, y can be
determined for each burst, although r will be unknown
and must be statistically averaged over, as with the y
coordinate in the 1-D case. Each particle size will have
a mean angle y with a finite spread associated with it.
In principle, the variation in r for each measured y
could be averaged over, although the statistical uncer-
tainty will be high for the extreme y values which only
occur a few times. We take the simpler approach of
measuring the mean value for each size class, y (D), and
then averaging over r.

Despite the restriction to 2-D velocities the exact
expression for the burst length as a function of y and r
is algebraically complicated,8 and it does not appear
possible to obtain a simple expression equivalent to
Eq. (8). Therefore we simplify the problem again.
For the trajectory with r = 0 the burst length is

L(D,-y) = (dy/V/2)11/[tan2'y + cos2(0/2)]I1/2{ln(Vm(D)/Vt)Il/2 ,

(12)

which is simply Eq. (6) with an additional factor ac-
counting for the variation in the number of fringes
crossed with cosy and for the slight ellipticity of the
Gaussian intensity contour due to the factor cosO/2.
We approximate the dependence on r by making the
substitution y2/dY 2

- (r 2 /dY2) (sin 2 y cos 2(0/2) + cos 2 y)

which gives

L(D,-y,r) = (dy/V/2)11/[tan2 -y + cos2(0/2)]1l/2

x ln[V.(D)/V,]

- (8r2 /dY2)[sin 2-Y cos2(0/2) + cos2%]1/2 . (13)

The maximum trajectory displacement can then be
solved for as

rm(D,y) = dY/2/2[sin 2 Y cos2 (0/2) + cos2 yl/21

x 2n[V +(D) +Vt]

- 2(No1Nf)2[1 + tan2_y/cos2(0/2)]}1/2. (14)

7.00 21.00 35.00 49.00 63.00 77.00 91.00 105.00
Normalized Diameter

Fig. 5. Family of curves showing the dependence of cross section on
diameter for 2-D trajectories. The parameters are as in Fig. 2 with

Nf = 16 and the curves are labeled with the value of -y.

We then compute the expected average of L2, solve for
Vm(D), and use Eq. (14) to give

A(D,,y) = 2*zprm(D,y)

= (3/V2)zPdy([cos 2 (0/2) + tan2
y]/1cos

2 (O/2)

X [sin2 -y cos
2
(0/2) + os2 -Y1)11

/2

X cos
2 (O/2)[(L2(D,-y))/dy] (No/Nf)

2
j
1 1 2 (15)

for the cross section as a function of the diameter and
the trajectory angle. As a partial check on the algebra
we see that the result reduces to Eq. (9) for y = 0. The
dependence on y is shown in Fig. 5 for NoINf = 0.5.
We see that for angles greater than ,30° there is a very
large reduction in the cross section. If the flow angle is
correlated with the particle size, a bias will be intro-
duced in the measured distribution unless this effect is
accounted for.

VIl. Conclusions

We have examined the problem of number density
measurements with a LDA. It is shown that such
measurements can be accurately made if an optical
measurement cross section can be defined. Simple
geometric expressions for the cross section, which in-
clude an unknown scattering function, are derived. It
is pointed out that previous work has suffered from the
difficulties associated with measuring the unknown
scattering function. A new approach is described
which allows the unknown parameter to be statistical-
ly measured in situ without the need for independent
calibration.

The method is shown to automatically adapt to vari-
able optical conditions and promises reliable results in
difficult conditions where the particle size distribution
is very broad.

2596 APPLIED OPTICS / Vol. 26, No. 13 / 1 July 1987

Normalized Cross Section
3.00-

Particle
trajectory 2.60-

2.20-

At | -By l b

s l \

l



References

1. W. M. Farmer, "Measurement of Particle Size, Number Density,
and Velocity Using a Laser Interferometer," Appl. Opt. 11, 2603
(1972).

2. P. Buchhave, J. Knuhtsen, and P. E. Olldag, "A Laser Doppler
Apparatus for Determining the Size of Moving Spherical Parti-
cles in a Fluid Flow," International Patent Application PCT/
DK83/00054 (1983).

3. M. Saffman, P. Buchhave, and H. Tanger, "Simultaneous Mea-
surement of Size, Concentration, and Velocity of Spherical Parti-
cles by a Laser Doppler Method," in Proceedings, Second Inter-
national Symposium on Applications of Laser Anemometry to
Fluid Mechanics, Lisbon (1984).

4. L. E. Drain, "Laser Anemometry and Particle Sizing," in Pro-

ceedings, International Conference on Laser Anemometry-
Advances and Applications, Manchester (1985).

5. W. M. Farmer, "Sample Space for Particle Size and Velocity
Measuring Interferometers," Appl. Opt. 15, 1984 (1976).

6. E. D. Hirleman, S. L. K. Wittig, and J. V. Christiansen, "Develop-
ment and Application of an Optical Exhaust Gas Particulate
Analyzer," Report RE 76-4, Laboratoriet For Energiteknik,
Technical University of Denmark (1976).

7. W. D. Bachalo and M. J. Houser, "An Instrument for Two-
Component Velocity and Particle Size Measurement," in Pro-
ceedings, Third International Symposium on Applications of
Laser Anemometry to Fluid Mechanics, Lisbon (1986).

8. P. Buchhave, "Biasing Errors in Individual Particle Measure-
ments with the LDA-Counter Signal Processor," in Proceedings,
LDA-Symposium, Copenhagen (1976).

Patter continued from page 2553

Approaching
(Active)
Vehicle

VIEW A-A

Fig. 1. Optoelectronic docking system automatically controls the
approach of an active vehicle or mechanism to a passive vehicle or
object. The maneuvers of the approaching vehicle are controlled in
response to the optoelectronically sensed relative position of the

approached vehicle.

the distance to the target is determined from the time of flight of the
light pulses; the approach speed is calculated from the rate of change
of the distance.

At a distance of 30 m, the approach-control task is handed to a cw
laser tracking subsystem, which distinguishes among the return
signals from the three retroreflectors. In this case, the 200 by 20°
field of view is still scanned by driving twenty transmitting and
twenty receiving diodes in sequence, but the three target returns are
detected in separate diodes, and the distance (within about ±3 cm)
to each retroreflector is computed by measurement of the relative

phase, in the return signal, of a 3-MHz modulation imposed on the
transmitted signal. From the three range signals, the system com-
putes the average target distance and the orientation of the target
relative to the line of sight. The coordinates of the return signals are
also processed to compute both the direction to the target and the
target roll angle and roll rate.

A charge-coupled-device-TV/pulse-ranging system takes over at
distances of less than 3 m: from 3 m to 1 m, the system processes the
outline of the reflective docking plate in the TV image to determine
the target pitch and yaw; at 1 m, the docking-plate image exceeds the
camera field of view and the system begins to seek alignment be-
tween four laser beams and the converging edges of the dark pattern
in the docking plate; at a distance of 35 cm, the docking probe enters
the docking port; and at 20 cm, the probe closes a hard-docking
indicator switch, which deactivates the system.

This work was done by Steven M. Ward of Energy Optics, Inc., for
Johnson Space Center. For further information, refer to MSC-
21159.

Sliding capacitive displacement transducer
A sliding capacitive displacement transducer, the capacitance of

which varies linearly with displacement, enables the use of a simple
circuit based on an operational amplifier instead of a more compli-
cated capacitance bridge. With the new circuit, transducers as
small as 1.3 mm square and 0.1 mm thick have produced output-
voltage changes of'-20O mV/0.13 mm of displacement. Examples of
transducers and the circuit are shown in Fig. 2. The flat-plate
transducer is sensitive only to motion in the x direction, since motion
in the y direction does not change the area of overlap. The piston-
type transducer can be made quite small for installation in confined
spaces.

The circuit includes a charge amplifier, consisting of an operation-
al amplifier with a stable fixed capacitor in its feedback loop. When
an alternating voltage of fixed amplitude is applied to the capacitive
transducer, the amplitude of the output of the charge amplifier
changes by an amount proportional to the change of capacitance
produced by the motion of the displacement transducer. The detec-
tor rectifies the amplifier output, producing a voltage that changes
by an amount proportional to the change in capacitance and, there-
fore, to the displacement. To adjust the final output signal to zero
for some selected reference displacement, a steady voltage equal to
the signal voltage at that displacement is subtracted from the signal.
Once that has been done, the final output voltage will be proportion-
al to the displacement from the reference position. A dc amplifier is
used to provide a buffered output.

continued on page 2658
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