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Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade
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We present schemes for geometric phase compensation in an adiabatic passage which can be used for the
implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly
interacting atoms. Protocols using double sequences of stimulated Raman adiabatic passage (STIRAP) or
adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP
sequences, or inverting the phase between two ARP pulses, provides state transfer with well-defined amplitude
and phase independent of atom number in the Rydberg blockade regime. Using these pulse sequences we present
protocols for universal single-qubit and two-qubit operations in atomic ensembles containing an unknown number
of atoms.
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Quantum information can be stored in collective states
of ensembles of strongly interacting atoms [1]. This idea
can be extended to encoding an entire register of qubits in
ensembles of atoms with multiple ground states [2] which
opens up the possibility of large quantum registers in a
single atomic ensemble [3], or of coupling arrays of small
ensembles in a scalable atom-chip-based architecture [4].
Quantum information based on ensembles can be realized
more generally in any ensemble of strongly coupled spins
[5]. Our proposal for implementing high-fidelity quantum
gates in ensembles is thus of interest for several different
implementations of quantum computing.

The enhanced coupling to the radiation field by a factor
of

√
N , with N the number of atoms or spins, is useful

for coupling matter qubits to single photons [6]. Combining
photon coupling with local quantum gates in ensembles
enables architectures with improved fidelity for quantum
networking [7]. The use of ensemble qubits is also attractive
for the deterministic loading of registers of single-atom qubits
[8–10] and for realizing gates that act on multiple particles.
All of these capabilities rely on high-fidelity quantum gate
operations between collectively encoded qubits. However,
due to the dependence of the Rabi frequency of oscillations
between different collective states on the number of atoms as√

N , it is difficult to perform gates with well-defined rotation
angles in the situation where N is unknown [11,12]. Although
there is recent progress in the nondestructive measurement
of N with high accuracy [13], it remains an outstanding
challenge to implement high-fidelity quantum logic gates
without precise knowledge of N , particularly in the case of
collectively encoded registers [2] where the effective value of
N depends on the unknown quantum state encountered during
a computation.
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Adiabatic passage techniques [stimulated Raman adiabatic
passage (STIRAP) and adiabatic rapid passage (ARP)] have
been widely used for deterministic population transfer in
atomic and molecular systems [14,15]. These techniques have
been studied for quantum state control [16], qubit rotations
[17], creation of entangled states [18], and for deterministic
excitation of Rydberg atoms [19,20]. Although the STIRAP
or ARP methods provide pulse areas with strongly suppressed
sensitivity to the Rabi frequency �N , and therefore suppressed
sensitivity to N , the phase of the final state is in general still
strongly dependent on N . A randomly loaded dipole trap
follows a Poissonian distribution in the atom number, with
relative fluctuations 1/

√
N . Indeed, gate errors at the level

of 10−3 can be achieved, but would require N̄ ∼ 4000, and
achieving full blockade for such a large ensemble remains an
outstanding challenge.

In this Rapid Communication we propose double adiabatic
sequences using either STIRAP or ARP excitation which re-
move the phase sensitivity, and can be used to implement gates
on collectively encoded qubits without precise knowledge of
N even for moderately sized ensembles.

Method for phase compensation. Our approach is shown in
Fig. 1. The quantum register consists of individually addressed
atomic ensembles in arrays of optical dipole traps or optical
lattices [Fig. 1(a)]. The energy-level scheme for STIRAP and
ARP is shown in Fig. 1(b). A sequence of two STIRAP
pulses is produced with fields having Rabi frequencies �1,�2,
and detuning δ from the intermediate state. In the regime of
a strong Rydberg blockade, the first STIRAP (ARP) pulse
deterministically prepares the ensemble in a collective state
with a single Rydberg excitation, as we demonstrated in
Ref. [20]. The second reverse STIRAP pulse, as shown in
Fig. 1(c), returns the Rydberg atom back to the ground state.
A similar scheme can be implemented using linearly chirped
ARP pulses, as shown in Fig. 1(d).

We have studied the population and phase dynamics of the
collective states of the atomic ensemble interacting with laser

010303-11050-2947/2013/88(1)/010303(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.010303


RAPID COMMUNICATIONS

I. I. BETEROV et al. PHYSICAL REVIEW A 88, 010303(R) (2013)

2

1

(a) (b)

(c)

(d)

0

1

r

e
t

0

r

STIRAPArray of optical dipole traps with
individually addressed sites

ARP

)z
H

M(
) z

H
M(

0

5

10

15

-8 -6 -4 -2 0 2 4 6 8
-2
-1
0
1
2

-

t 0( s)

+

(t )
(2)
0

(1)
0

FIG. 1. (Color online) (a) Scheme of the quantum register based
on individually addressed atomic ensembles in an array of optical
dipole traps. Laser pulses are used to excite atoms into the Rydberg
state. Only one atom in each site can be excited due to the
Rydberg blockade. Simultaneous excitation of Rydberg atoms in the
neighboring sites is also blocked. (b) Energy levels for two-photon
STIRAP and single-photon ARP excitation. (c) Time sequence of
STIRAP laser pulses. (d) Time sequence for ARP laser excitation.

radiation. Calculations were performed using the Schrödinger
equation, neglecting spontaneous emission, and assuming a
perfect blockade so only states with at most a single Rydberg
excitation were included. The details of our calculations are
discussed in the Supplemental Material [21]. At the end of a
double STIRAP sequence the population is returned back to
the collective ground state |000 . . .〉 of the atomic ensemble,
but a geometric phase is accumulated. This phase shift of
the ground state is dependent on the Rabi frequency and
leads to gate errors. We have found that the phase of the
atomic wave function can be compensated by switching the
sign of the detuning between two STIRAP pulses, or by
switching the phase between two ARP pulses, as shown in
Fig. 2. For a double STIRAP sequence with the same detuning
throughout, the accumulated phase depends on N [Fig. 2(a)],
while the phase change is zero, independent of N , when
we switch the sign of detuning δ between the two STIRAP
sequences [Fig. 2(b)]. A similar phase cancellation occurs
for π phase-shifted ARP pulses [Fig. 2(c)], which can be
implemented using an acousto-optic modulator [22].

The probability of loading N noninteracting atoms in a
small optical or magnetic trap is described, in general, by
Poissonian statistics. For N̄ = 5 the probability to load zero
atoms is 0.0067, which is small enough to create a large quan-
tum register with a small number of defects [23]. Figure 3(a)
shows a comparison of the fidelity of single-atom excitation
for a single-photon π rotation with the area optimized for
N = 5 atoms compared to STIRAP or ARP pulses. We
see that the adiabatic pulses reduce the population error by
up to several orders of magnitude for a wide range of N .
Finite lifetimes of the intermediate excited state and Rydberg
states can lead, however, to a breakdown of the deterministic

FIG. 2. (Color online) Calculated time dependence of the phase
of the collective ground-state amplitude for N = 1,2,7 atoms (top to
bottom). Double STIRAP sequence (�1/2π = 30 MHz, �2/2π =
40 MHz) (a) with δ/2π = 200 MHz, (b) with δ/2π = 200 MHz ×
sgn(t), and (c) for a double ARP pulse sequence with phase
inversion. The single STIRAP sequence used �j (t) = �je

−(t+tj )2/2τ2

for j = 1,2 with �1/2π = 30 MHz, �2/2π = 40 MHz, t1 = 3.5 μs,
t2 = 5.5 μs, τ = 1 μs, and δ/2π = 200 MHz. The single ARP pulse
used �0(t) = �0e

−t2/2τ2
with �0/2π = 2 MHz, τ = 1 μs, and linear

chirp α/2π = (1/2π )[dδ(t)/dt] = 1 MHz/μs [20].

excitation. Figure 3(b) shows the population errors for a single
STIRAP sequence in the ensemble of N = 1–4 atoms with
a linewidth of the intermediate state γe/(2π ) = 5 MHz and
of the Rydberg state γr/(2π ) = 0.8 kHz calculated using
density-matrix equations for an ensemble of interacting atoms
[24] for two different detunings from the intermediate state
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FIG. 3. (Color online) (a) Comparison of the fidelity of single-
atom excitation by a π laser pulse having the area optimized for N = 5
atoms (t = π/

√
5�), with a STIRAP sequence, and with an ARP

pulse. All parameters are as in Fig. 2. Spontaneous emission is not
taken into account. (b) The population error for a single STIRAP se-
quence calculated taking into account a linewidth γ /(2π ) = 5 MHz of
the intermediate state for detuning δ = 200 MHz (�1/2π = 30 MHz,
�2/2π = 40 MHz, τ = 1 μs) and δ = 2 GHz (�1/2π = 250 MHz,
�2/2π = 250 MHz, τ = 0.2 μs). (c),(d) Dependence of the phase
error on Rabi frequency changes between pulses for STIRAP or ARP
pulses calculated using the Schrödinger equation.
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δ = 200 MHz (�1/2π = 30 MHz, �2/2π = 40 MHz, τ =
1 μs) and δ = 2 GHz (�1/2π = 250 MHz, �2/2π =
250 MHz, τ = 0.2 μs). We see that the effects of the finite
lifetime of the intermediate state are negligible if the detuning
from the intermediate state is chosen so that � � �.

Although the proposed double-pulse sequences are
almost insensitive to moderate variations of the absolute Rabi
frequency, the main sources of errors are fluctuations of
the Rabi frequencies between the first and second pulses.
For perfectly identical pulses the population transfer error
in ensembles of N = 5 atoms can be kept below 10−3 for
STIRAP and below 10−4 for an ARP pulse for a wide range
of Rabi frequencies. The dependence of the phase errors
on parameters of the laser pulses are shown in Figs. 3(c)
and 3(d). The dependence of the phase error on the ratio of
Rabi frequencies �

(2)
1 /�

(1)
1 between pulses [see Fig. 1(b)] is

shown in Fig. 3(c) for N = 1–5 atoms. The single-photon
ARP excitation in Fig. 3(d) demonstrates reduced sensitivity
to fluctuations of the Rabi frequency and has higher efficiency
at lower Rabi frequencies. Although this could be an important
advantage over STIRAP, implementation of single-photon
Rydberg excitation is difficult due to the need for ultraviolet
laser radiation and a larger sensitivity to Doppler broadening
[25]. For either approach the double-pulse amplitudes must be
well matched for low phase errors. Using the fiber delay line,
amplitude matching at the level of 10−6 is feasible over a time
scale of a few microseconds [26].

Gates. We have developed protocols to implement quan-
tum logic gates using phase-compensated double STI-
RAP or ARP. Consider atoms with levels |0〉,|1〉,|e〉|r〉
as shown in Fig. 1. A qubit can be encoded in an N

atom ensemble with the logical states |0̄〉 = |000 . . . 000〉,
|1̄〉′ = 1√

N

∑N
j=1 |000 . . . 1j . . . 000〉. Levels |0〉,|1〉 are atomic

hyperfine ground states. Coupling between these states
is mediated by the singly excited Rydberg state |r̄〉′ =

1√
N

∑N
j=1 |000 . . . rj . . . 000〉. A Rydberg blockade only al-

lows single excitation of |r〉 so the states |0̄〉 and |r̄〉′ experience
a collectively enhanced coupling rate �N = √

N�. States |r̄〉′
and |1̄〉′ are coupled at the single-atom rate �. State |1̄〉′ is
produced by the sequential application of π pulses |0̄〉 → |r̄〉′
and |r̄〉′ → |1̄〉′.

Pulse areas independent of N on the |0〉 ↔ |r〉 transition
can be implemented with STIRAP or ARP as described above.
We will define the logical basis states and the auxiliary
Rydberg state as |0̄〉 = |000 . . . 000〉, |1̄〉 = eıχN |1̄〉′, and |r̄〉 =
eıχN |r̄〉′. Here χN is the phase produced by a single N atom
STIRAP pulse with positive detuning. We assume that we do
not know the value of N , which may vary from qubit to qubit,
and therefore χN is also unknown, but has a definite value for
fixed N .

We find that arbitrary single-qubit rotations in the basis
|0̄〉,|1̄〉 can be performed with high fidelity, without precise
knowledge of N , by accessing several Rydberg levels |r0〉, |r1〉
as shown in Fig. 4(a). The equations which describe the gate
sequence are discussed in the Supplemental Material [21]. The
final state |ψ〉 = a′|0̄〉 + b′|1̄〉 is arbitrary and is selected by
the rotation R(θ,φ), in step 3: ( a′

−b′ ) = R(θ,φ)( a

b ). Depending
on the choice of implementation, to be discussed below, this
may be given by a one- or two-photon microwave pulse,
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FIG. 4. (Color online) (a) Single-qubit gate for a mesoscopic
qubit with N atoms. Pulses 1–5 act between the qubit states |0〉,|1〉 and
the Rydberg states |r0〉,|r1〉. Pulses 1,2,4,5 are optical transitions and
pulse 3 is a microwave frequency transition between Rydberg states.
(b) CNOT gate between mesoscopic qubits with Nc atoms in the control
qubit and Nt atoms in the target qubit. (c),(d) The dependence of the
population of the qubit state |1〉 after two sequential π/2 rotations on
the phase difference φ between the pulses (c) with and (d) without
switching the sign of the detuning between the STIRAP sequences.

with Rabi frequency �3. Provided states |r0〉,|r1〉 are strongly
interacting, and limit the number of excitations in the ensemble
to one, the indicated sequence is obtained. In the regime of
�3 large compared to the Rydberg excitation rates, the time
spent populating a Rydberg level corresponds to 4π of the
Rydberg pulse area. This is the same as for a single-atom CZ

gate, and we therefore expect the limit on gate infidelity to
be ∼0.002 [27] for small ensembles. It was shown in Ref. [3]
that in a three-dimensional (3D) lattice the number of atoms N

which can be entangled at fixed error scales linearly. Although
the details of the error scaling are different for ensemble qubits,
for moderately sized ensembles we anticipate approximately
linear scaling, with a numerical prefactor that requires a
detailed analysis to be given elsewhere.

The five-pulse sequence we describe here is more compli-
cated than the three pulses needed for an arbitrary single-qubit
gate in the approach of Ref. [1]. The reason for this added
complexity is that the special phase preserving the property
of the double STIRAP or ARP sequences requires that all
population is initially in one of the states connected by the
pulses. The sequence of pulses in Fig. 4(a) ensures that this
condition is always satisfied.

To verify that our scheme preserves coherence, we have nu-
merically modeled the sequence of two single-qubit rotations
for an angle of π/2 with relative phases φ in the range 0–π . The
probability of finding the ensemble in the qubit state |1〉 was
calculated for our STIRAP-based protocol for N = 1–3 atoms
and compared with the outcome of a similar single-atom gate
sequence applied using conventional Rabi rotations [shown as
black in Fig. 4(c)]. We have found that the probability for the
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ensemble to be in state |1〉 is independent of the number of
atoms and correctly depends on the relative phase between the
microwave pulses, as shown in Fig. 4(c). In contrast, if we do
not switch the detuning from the intermediate state after the
first STIRAP pulse, the probability of finding the ensemble in
the state |1〉 becomes N dependent and is inconsistent with the
expected values, as shown in Fig. 4(d).

A controlled-NOT (CNOT) gate can be implemented by the
sequence H (t)-CZ-H (t) [28], where the Hadamard gates are
performed as in Fig. 4(a). The CZ operation is implemented in
analogy to schemes for single-atom qubits [29] mediated by
Rydberg interactions, using the protocol π|1̄〉−|r̄〉(c) 2π|1̄〉−|r̄〉(t)
π|1̄〉−|r̄〉(c), where c (t) stand for control (target) qubits. The
CNOT gate therefore requires a total pulse area of 12π Rydberg
pulses. We can reduce this to 7π of Rydberg pulses as shown
in Fig. 4(b) which implements an approach analogous to the
amplitude-swap gate demonstrated for single-atom qubits in
Ref. [30]. All pulses except number 4 in the sequence are
optical and are localized to either the control or target qubit.
Pulse 4 is a microwave field and drives a π rotation on both
qubits. As for the single-qubit gate the requirement for high-
fidelity operation is that the interactions |r0〉 ↔ |r0〉, |r1〉 ↔
|r1〉, |r0〉 ↔ |r1〉 all lead to a full blockade of the ensembles,
and we refer to the Supplemental Material [21] for the choice

of n that fulfills this condition. Since the frequency of pulse 4,
which is determined by the energy separation of states |r0〉,|r1〉,
can be chosen to be very different from the qubit frequency
given by the energy separation of states |0〉,|1〉, the application
of microwave pulses will not lead to crosstalk in an array of
ensemble qubits.

In summary we have demonstrated that double STIRAP and
ARP sequences with phase compensation enable high-fidelity
quantum gates in collectively encoded ensembles. We have
shown that phase compensation using this method works
effectively regardless of the number of atoms N even in small
atomic ensembles randomly loaded, which display a large
fractional variation in N . We have presented full protocols
for one-qubit and two-qubit logic gates which perform at high
fidelity both in the regime of small and large ensembles. We
anticipate that these ideas will contribute to the realization
of quantum logic using collectively encoded qubits and
registers.
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of Russian Federation MK.7060.2012.2, EPSRC Project
No. EP/K022938/1, RAS, RFBR, and Russian Quantum
Center. M.S. was supported by the NSF and the AFOSR MURI
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