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Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography
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We present a detailed error analysis of a Rydberg blockade mediated controlled-NOT quantum gate between two
neutral atoms as demonstrated recently in Isenhower et al. [Phys. Rev. Lett. 104, 010503 (2010)] and Zhang et al.
[ Phys. Rev. A 82, 030306 (2010)]. Numerical solutions of a master equation for the gate dynamics, including all
known sources of technical error, are shown to be in good agreement with experiments. The primary sources of
gate error are identified and suggestions given for future improvements. We also present numerical simulations
of quantum process tomography to find the intrinsic fidelity, neglecting technical errors, of a Rydberg blockade
controlled phase gate. The gate fidelity is characterized using trace overlap and trace distance measures. We
show that the trace distance is linearly sensitive to errors arising from the finite Rydberg blockade shift and
introduce a modified pulse sequence which corrects the linear errors. Our analysis shows that the intrinsic gate
error extracted from simulated quantum process tomography can be under 0.002 for specific states of ’Rb or
Cs atoms. The relation between the process fidelity and the gate error probability used in calculations of fault

tolerance thresholds is discussed.
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I. INTRODUCTION

Arrays of laser-cooled neutral atoms in optical lattices
or far-off-resonance optical traps (FORTSs) are promising
candidates for quantum computing experiments, due to their
very long decoherence time (up to several seconds) for ground-
state atoms and strong two-atom interaction for highly excited
Rydberg state atoms. This strong, long-range, and controllable
interaction leads to the so-called Rydberg blockade effect in
which only one atom in an ensemble can be excited into
a Rydberg state if the ensemble size is smaller than the
Rydberg blockade radius. Jaksch et al. [1] first proposed
to use Rydberg blockade to implement a fast two-qubit
controlled-phase gate (Cz), which can be converted into a
controlled-NOT gate (CNOT) using single-qubit rotations [2].
Soon after, various schemes were proposed for fast quantum
gates with an ensemble [3—-6], entangled state preparation
[7], quantum algorithms [8,9], quantum simulators [10], and
efficient quantum repeaters [11].

Rydberg blockade, the central ingredient of the above
schemes, has been demonstrated between two individual neu-
tral atoms held in FORTs [12,13] and was used to demonstrate
a two-qubit CNOT quantum gate [14] and to generate entangled
Bell states with fidelity of about 0.58-0.75 after atom loss
correction (0.46—0.48 without atom loss correction) [14—16].
Using an improved apparatus [17] a fidelity of 0.92 for the
CNOT probability truth table and 0.71 for Bell state fidelity after
atom loss correction [0.71 (0.58) for the CNOT truth table (Bell
state fidelity without atom loss correction)] was demonstrated.
These proof-of-principle results are promising but are still far
from simple estimates of Rydberg gate errors at the level of
E ~ 1073 predicted in [1,18].

The simple estimates are based on intrinsic errors associated
with the atomic physics of the states used for Rydberg
blockade. The essential intrinsic errors are the finite lifetime
of Rydberg states and the finite strength of the Rydberg-
Rydberg blockade interaction. In addition to intrinsic errors,
experiments are sensitive to several different sources of
technical error: spontaneous emission from an intermediate
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level in a two-photon excitation scheme, magnetic-field
fluctuations, pulse area errors, Doppler effects due to finite
atomic temperature, etc. We have previously estimated gate
errors [17,18] by treating each error source separately in the
small error limit and adding them together. This provides a
good estimate for small errors but it is unreliable for larger
errors, as in the experiments, and does not provide a rigorous
fidelity measure for the gate operation.

In this paper we present a more rigorous treatment by
including all known error sources in a master equation
for the density matrix evolution (optical Bloch equations).
We dynamically track the density matrix evolution during
the CNOT pulse sequence and then average the results over
the computational input states for comparison with simple
analytical estimates. We also extract a rigorous value for the
gate fidelity using simulated quantum process tomography.
The numerical results are in good agreement with analytical
error estimates when technical errors are neglected and with
experimental results when technical errors are included in a
Monte Carlo simulation. Numerical simulations of quantum
process tomography with realistic atomic parameters confirm
that it is, in principle, possible to reach quantum process errors
of 2 x 1072 for both Rb and Cs atoms.

In Sec. IT we present the experimental setup and procedures
used to demonstrate the CNOT gate and generate entangled Bell
states. We also enumerate the various sources of technical
imperfection in a realistic experiment. In Sec. III we give
analytical estimates of the intrinsic gate error and present a
new pulse sequence which removes the leading linear term
in the finite blockade shift error. In Sec. IV we present a
master equation model which includes both the technical error
sources from Sec. II and intrinsic errors from Sec. III. In
Sec. IVA we compare numerical Monte Carlo simulations
with experimental results and demonstrate good agreement. In
Sec. IV B we perform simulated quantum process tomography
of a two-qubit controlled-phase gate accounting only for
intrinsic errors. This analysis shows that in a well-designed
experiment where technical errors are minimized it should be
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FIG. 1. (Color online) (a) Experimental geometry. Two single
atoms are trapped in two FORTs separated by about 9 um. (b)
Relevant levels of 8’Rb. To reach the Rydberg state we use two-photon
excitation with wavelengths of 780 and 480 nm.

possible to reach low gate errors, below known fault tolerance
thresholds [19,20], for both Rb and Cs. A summary and
discussion are presented in Sec. V.

II. EXPERIMENTAL PROCEDURES AND TECHNICAL
IMPERFECTIONS

The experimental apparatus and procedures, as shown in
Fig. 1, have been described in detail in our recent publications
[14,17]. For ease in understanding the subsequent analysis
we include a brief description of the procedures, as well as
estimates of various sources of technical imperfections.

A. Experimental procedures

We use FORTs to localize single 87Rb atoms, which can
be individually addressed using tightly focused beams that
are scanned by acousto-optical modulators. The FORT beams,
propagating along +z, are formed by focusing a laser beam
with a wavelength of A = 1064 nm to a waist (1/e? intensity
radius) of wy = 3.4 um. We generate a linear array of trap
sites using a diffractive element with the central site’s trap
depth of Uy/kp = 4.5 mK and trap separation of about 9 um
along the x direction. We use two sites, one labeled as the
control and the other as the target, to perform two-qubit
quantum logic operations and to generate entangled states.
A bias magnetic field is applied along z, which defines the
quantization axis for the optical pumping (B, = 0.15 mT) and
lifts the degeneracy of the Zeeman sublevels (B, = 0.37 mT)
of Rydberg states during the gate operation. The relevant
levels of 8Rb are shown in Fig. 1(b). We use the 5512
hyperfine clock states as our qubits |0) = |F = 1,myr = 0) and
1) = |F =2,mpr = 0), separated by w;o/27 = 6.83 GHz,
and the Rydberg state |r) = [97ds5,,m; = 5/2).

We perform single-qubit rotations between |0) and | 1) using
two-photon stimulated Raman transitions driven by focusing
a oy polarized 780-nm laser with frequency components
separated by w9 and detuned by 101 GHz to the red of the
D2 transition [21]. Total typical power in the two Raman
sidebands is ~90 uW with waist of wy, , = 7.7 um, giving
a single-qubit Rabi frequency of Q,/2m = 0.56 MHz with
7 pulse times of ~900 ns and peak-to-peak amplitude of
better than 0.98 after correction for background atom loss
of 10% [17].
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For coherent Rydberg excitation between |1) and |r) we use
a two-photon transition with o polarized 780- and 480-nm
beams [22]. They counterpropagate along the trap’s axial z
direction to minimize Doppler broadening of the transition.
The 780-nm beam is tuned about 2.0 GHz to the red of the
1) — |5p3j2, F " = 3) transition with typical beam power of
2.4 uW and waist of w,|, g = 7.7 um. The 480-nm beam is
tuned about 2.0 GHz to the blue of the |Sp3», F' = 3) — |r)
transition with typical beam power of 13 mW and waist of
Wy|y,p = 4.5 um. This gives a Rydberg red Rabi frequency
of Qr/2m = 118 MHz, a Rydberg blue Rabi frequency of
Qp/2m = 39 MHz, and Rydberg Rabi frequency of /27 =
1.15 MHz, with & pulse times of ~440 ns and amplitude of
0.92 after correction for background atom loss of 10%.

In order to perform a two-qubit CNOT gate we start by
loading single atoms from a background vapor magneto-
optical trap into two FORT sites. The trapped atoms have
a measured temperature of 7, >~ 175 uK using a release
and recapture method [23]. Atom detection is accomplished
by simultaneously illuminating both trapping sites with
near-resonant red-detuned molasses light and imaging the
fluorescence onto a cooled Electron Multiplying Charge
Coupled Device (EMCCD) camera. Detected photon counts
are integrated for approximately 20 ms. Comparison of the
integrated number of counts in a region of interest with
predetermined thresholds indicates the presence or absence
of a single atom [12]. After single atoms are loaded in these
sites they are optically pumped into |1) with efficiency of
about 99% [17] using & polarized light propagating along —x
tuned to the |55y, F = 2) — |5p1/2,F/ = 2) D1 transition at
795 nm and [5s1/2, F = 1) — |5p3/2,F/ = 2) D2 transition at
780 nm. This is followed by ground-state 7 pulses to either or
both of the atoms to generate any of the four computational
basis states. We then turn off the optical trapping potentials
for about 4 us, apply the CNOT pulses, and restore the optical
traps. Ground-state 7 pulses are then applied to either or both
atoms to select one of the four possible output states. Atoms
left in state |1) are removed from the traps with unbalanced
radiation pressure (blow away light), and a measurement is
made to determine if the selected output state is present. The
selection pulses provide a positive identification of all output
states and we do not simply assume that a low photoelectron
signal corresponds to an atom in |1) before application of the
blow away light [14,17].

Following the above procedures we have obtained the CNOT
truth table fidelity of F = ;Tr[U/}.,Ucnor] = 0.92 + 0.06,
with Ujgea and Ucnor the ideal and experimentally obtained
CNOT truth tables. To measure the state preparation fidelity, we
use the same sequence but without applying the CNOT pulses.
The computational basis states are prepared with an average
fidelity of F = 0.97.

To create entangled states we use 7 /2 pulses on the control
atom to prepare the input states |ct) = \/Li(|0) +i|1))|1) and

ct) = \%UO) +i]1))|0). Applying the CNOT to these states

creates two of the Bell states, |By) = LZ(IOO) + [11)) and

|By) = L2(|01) 4+ [10)). In order to verify entanglement we

measured the coherence of the | B)) state by parity oscillations
[14,17] and obtained a Bell state fidelity of 0.58 without any
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FIG. 2. (Color online) Calculated blockade shift B from the
theory of Ref. [25] and double excitation probability P, for state
|97ds,,m; = 5/2) as a function of relative position P(|z; — z»])
for a 0.37-mT magnetic field. The relative probability distribution
P(|z1 — z2]) assumes a trapping potential U/kp = 4.5 mK, waist
w = 3.4 um of the 1064-nm trapping light, and atom temperature
T =175 uK.

atom loss correction (0.71 after correction) [17]. Comparable
numbers for the Bell state fidelity were obtained in a related
experiment [15].

B. Technical imperfections

The main technical errors that affect the CNOT operation are
spontaneous emission of the intermediate level during Rydberg
excitation, magnetic noise, Doppler effects due to finite atom
temperature, and Rydberg laser power fluctuations.

The spontaneous emission error of the intermediate level
during a 7 excitation pulse can be estimated by Py =
;(Tyglqg—g + |g_§|), with y,,A, the radiative linewidth and
detuning from the p level, respectively. This error is about
0.8% for our current experimental setup.

Magnetic-field fluctuations cause transition shifts, giving
a Rydberg two-photon detuning Ag = (g,m, — gym)upB;
with g, =6/5, m, =5/2, g1 =1/2, and m; =0 for our
implementation in Fig. 1(b). We assume that the magnetic-field
fluctuations are Gaussian distributed with a standard deviation
of og = 2.5 x 107 T. This value was found by measuring
the decoherence time of the hyperfine qubit at two different
bias magnetic-field strengths [24]. Doppler broadening at
finite atom temperature 7, also gives two-photon detuning

Ap = (kg — kp)v with averaged variances of o2 = ovzy =
ol = ’% for both control and target atoms.

Other technical errors associated with finite atom temper-
ature are Rydberg blockade shifts, pulse area fluctuations,
and ac Stark shifts (or two-photon detunings) due to the
atomic position distribution in the FORTs. We assume that
the atomic position distribution for both control and target

2
atoms is Gaussian with variance of [18] 02 = 02 = %’%
24
and 0 = % % For the Rydberg blockade shift due to the

atomic position distribution, we use the theoretical blockade
shift curve as a function of relative atomic separation |z; — 23|
as shown in Fig. 2. The position-dependent Rabi frequency

and ac Stark shifts are
2 2

’
Nt 712
u'XYR(IJrz /Lx,R> W).YR(I‘FZ /Lv,R)

[(1+ /L2 ) (1 + /L2 )]

1

Qg(r) = Qr(0)

ey
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A ]
) 2 2 2.2
w? p(14+22/L2 p) wy‘B(lsz/Ly.B)

Qp(r) = Qg(0) 2

[(1+22/22 ) (1 +22/L2 )]
and

Q(r) — Q5(r)
47,

Here Qg (0), 25(0), and A,.(0) are the Rydberg red and blue
and ac Stark shifts at trap center, respectively; the Rayleigh
lengths are Ly g = rrwjzc‘y’R/)\R and L,|, p = T[w,%|y,B/)"B’

Power fluctuations of the Rydberg lasers will not only affect
the Rabi frequencies Qg and Qg, but will also affect the two-
photon detuning A,.. We assume that the power fluctuations of
the red and blue lasers are both Gaussian distributed with full
width at half maximum (FWHM) of 1% and 2%, respectively,
as measured independently.

Aqe(r) = Ay (0) + 3)

C. Dephasing errors

The technical imperfections listed in the previous section
show up as errors in the measured CNOT probability truth
table as well as in the fidelity of the output quantum states.
There are additional technical dephasing errors that do not
significantly affect the CNOT truth table but strongly impact
the fidelity of Bell state generation. As was pointed out in
Refs. [15,24], both magnetic-field fluctuations and atomic
motion lead to dephasing of the Rydberg state relative to
the ground state during gate operation because the motion
of Rydberg atoms between excitation and deexcitation pulses
leads to a stochastic phase that degrades the entanglement.
In the numerical simulations described in Sec. IV we do not
keep track of the position-dependent phase of the optical fields
in the evolution Hamiltonians during each blockade pulse
sequence [Egs. (14b) and (15a) below]. Instead we add an extra
dephasing term y;p, to the Liouville operators of Egs. (14b)
and (15b) in Sec. IV:

Yoh = v (¥8)* + (¥p)?, 4)

where yg = |Ag|/h and yp = Ap are the dephasing rates
due to magnetic-field fluctuations and Doppler effects, re-
spectively. In the Monte Carlo simulations presented below
these dephasing rates are sampled from distributions that are
generated with the position and velocity variances described
above. Both the magnetic-field fluctuations and atom position
variations at finite temperature also dephase the qubit states by
varying the hyperfine splitting between them. We model the
qubit dephasing as

Yor = v/ (¥so1)* + (vr)?, )

where ypo1 = w19(B; + o) — wi0(B;), is the dephasing rate
due to the second-order Zeeman shift of the clock transition by
magnetic-field fluctuations, B, is a static bias field, wo(B;) =

wio,/1 + [%]2 is the ground hyperfine splitting of the

clock states, gs,g; are electron and nuclear Landé factors,
and op is the magnetic-field fluctuation; yr = 1.03%
[18,26] is the dephasing rate in 1/ms due to atomic motion
in the FORT, U, is the peak FORT potential, §y/2mw =
(Up/kp)(1.5 kHz/mK) is the peak differential light shift of
the FORT, and 7, is the atom temperature.
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In addition to the above errors, there are also errors
associated with state preparation due to imperfect optical
pumping and single-qubit rotations. These errors are at about
the 1% level. There is also about 1% atom loss due to
background collisions before the CNOT pulse sequence.

III. INTRINSIC ERROR ESTIMATES

Even if all sources of technical error described in Sec. II B
are negligible there will still be intrinsic gate errors due
to the basic physics of the Rydberg blockade interaction.
Intrinsic errors of a Rydberg blockade CNOT gate include the
decoherence error due to the finite lifetime 7 of the Rydberg
state and rotation errors due to imperfect blockade. In the
strong blockade limit (2 <« B « wyg, where B is the Blockade
shift), the intrinsic gate error E; averaged over the input states
in the computational basis ({|00),]01),]10),|11)}) is [18,27]

PP GRL i Wl RAPLL B
' aqr v,  7B2) " 8B? o)’

The first term in Eq. (6) is the Rydberg decay error due to the
finite lifetime t of the Rydberg state, and the second term is the
imperfect blockade error. In the limit of w;g > (B, Q) we can
extract a simple expression for the optimum Rabi frequency
which minimizes the error

B2/3
Qi = 0m)'" =5 (7
Setting 2 — €2, leads to a minimum averaged gate error of
3731
Imin = = o 2/3° (8)
8 (Br)¥

In our experiments T ~ 300 us is the radiative lifetime of
the 97ds,, Rydberg level, wio/2m = 6.83 GHz, and /27 =
1.15 MHz. In the experimental geometry shown in Fig. 1(a)
a range of two-atom separations, and hence blockade shifts,
occur. The blockade shift curve shown in Fig. 2 is calculated
from the theory of Ref. [25] using a trap separation of x =
8.7 um and a bias magnetic field of B, = 0.37 mT applied
along the Z axis. Averaging Eq. (6) over the probability
distribution P(|z; — z2|), which is dependent on the trapped
atom temperature of 175 uK, gives an expected error of
E = 8.5 x 1073, The corresponding averaged blockade shift
from Eq. (6) is B/27 = 5.3 MHz.

It should be emphasized that the average error E discussed
above ignores errors in the phases of the states generated by the
CNOT gate and therefore corresponds to the measurement of a
probability truth table. As discussed in Ref. [1], a Rydberg-
mediated C; gate has a phase error for the |11) input state of
[11) — —e'?|11), with ¢ = w2/2B. Averaging over the four
computational basis states gives an average intrinsic phase
error of Ey = m2/8B. Including the phase error, we find an
average intrinsic gate error of

Er=E + 22 9

2 =E1 + B 9

When Q « B the last term in Eq. (9), dominates over the
imperfect blockade term in Eq. (6). Using Eq. (9) we can again
extract a simple expression for the optimum Rabi frequency,
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FIG. 3. (Color online) Pulse sequence for Rydberg C; gate with
two-photon 780- and 480-nm excitation of Rb atoms following [1]
(a) and modified sequence to correct finite blockade phase error by
rapidly changing the phase of one of the Rydberg beams by ¢ (b).

which minimizes the error

14B\ /2
szzopl=<—> ) (10)

T

Setting €2 — €2, leads to a minimum averaged gate error of

VI 1
Ey, = —————.
min 2\/2 (B'L')l/2

Comparing Egs. (8) and (11) in the experimentally relevant
limit of Bt > 1 we see that E, , > E;_, . This result seems
to imply that Eq. (8) provides an overly optimistic estimate for
the gate error.

Despite this apparently disappointing result, the gate error
can indeed be made to satisfy the (Br)~%/3 scaling of Eq. (8)
by a modification of the C; sequence as shown in Fig. 3(b).
We note that the only input state for which the target atom
becomes Rydberg excited is |01). By shifting the phase of the
|5p3/2) — |r) laser used for Rydberg excitation by an amount
¢ during the gate operation we can add a phase of ¢ to this
state. This results in a phase gate

(1)

min *

10 o0 o0
0 —® 0 0

cz=lo o -1 o 12)
0 0 0 —e

Adding a single-qubit Z rotation of —¢ to the control atom
cancels the extra phases, leaving an ideal C; operation. As
we show in detail in Sec. IVB using simulated process
tomography, the standard sequence of Fig. 3(a) gives linear
phase errors that impact the trace distance fidelity measure.
Using the modified pulse sequence the linear phase errors are
canceled and the trace distance error is reduced.

We emphasize that perfect correction of the phase error
using this modified gate sequence assumes that B, and
therefore the phase ¢, are well defined, and do not fluctuate.
This is not true for thermally excited atoms but will be the
case for atoms that are in the motional ground state of the
confining potentials. If the atoms are thermally excited we can
still cancel the average value of ¢, but errors due to fluctuations
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about the average would remain. In the analysis of the intrinsic
error limit we assume that the atoms are in the motional ground
state so the phase can be canceled exactly.

IV. NUMERICAL SIMULATIONS

In order to accurately simulate the performance of the
Rydberg gate we integrate the master equation for the two-
atom dynamics including all known coherent and incoherent
rates. A related analysis was performed previously for the
Rydberg excitation dynamics of a single atom [28]. For
each atom we include five atomic states in our numerical
calculation, which are labeled in the level scheme of Fig. 1(b):
qubit |0), qubit |1), and reservoir level |g) = |551/2,mF # 0)
in the 551/, ground state; the intermediate level | p) = |5p3,2)

PHYSICAL REVIEW A 85, 042310 (2012)

and the Rydberg level |r). With this set of basis states the
two-atom dynamics are described by density matrices pc(t)
with dimensions 25 x 25. We take the initial condition to be a
separable state p.(0) = p.(0) ® p(0), with ¢ and t for control
and target atoms, respectively. We calculate the time evolution
by solving the master equation

dpe
dt

where Hy = He ® I, + 1. ® H + B[ % V], Loy = Lo @ I, +
I. ® Ly, I (I.) are 5 x 5 identity matrices, and 0,4 is a 24 x
24 zero matrix. The Hamiltonian H, (H,), after making the
rotating-wave approximation, and the Liouville operators L.
(L,) are given in the basis {|0),|g),|1),|p),|r)} as

i
= _T_Z[Hctapct] +£ct’ (13)

—op 0 0 Q2 O
0 0 0 0 0
Hep =" 0 0 0 Ql*z(cn)/z 0 ) (14a)
Qrep/2 0 Qrep/2 Ay Qpep/2
0 0 0 Qpcln/2 A,
0.12yp0pp 0 — 5 por — % pop —Z por
0 0.56yp0pp _%pgp — 5 Pgr
L= —%pp 0 0.32¥p0pp —2Zpyp %o . (14b)
—%Ppo —]/2—”,0[,5, _%ppl —YpPpp T VrOrr _}/,)Tmppr
—%Pro _%prg — 5 Pr1 _@prp —YrPrr

For Rb atoms we take into account the spontaneous
emission from the intermediate level |p) to the ground
level with a decay rate of y,/2m = 6.07 MHz and the
corresponding branching ratio of 0.56 to state |g), 0.32 to
state |1), and 0.12 to state |0) as well as the decay from
the Rydberg state |r) to the intermediate level |p) with rate
vr/2m =0.53 kHz. A, is the intermediate level detuning,
A, = Aye(r) + A + Ap is the two-photon detuning (see
Sec. I B), wjo/2m = 6.83 GHz is the hyperfine ground state
splitting; ¥1» = ¥ + Vpn is the total dephasing of the Rydberg
state relative to |1), ypn is the Rydberg dephasing rate due
to magnetic-field fluctuations and Doppler effects as shown
in Eq. (4); and yy; is the dephasing of qubit states due to
magnetic-field fluctuations and atomic motion.

Note that we do not include driving terms in Eq. (14b) that
couple the reservoir level |g) back to |p) and |r). Doing so
correctly would require adding additional Rydberg levels with
different values of m;, which would increase the numerical
burden. Since any population in |g) is already fully counted as
an error, including additional driving terms would only reduce
the final errors, and our results are reliably upper bounds on
the gate error.

A. Monte Carlo simulations including technical errors

In our numerical calculation, we consider two traps aligned
along z with separation of 8.7 um as shown in Fig. 1(a).

The atoms in each trap have temperature 7, and Gaussian
spatial probability distribution with variances of o, oy,
and o,, as given in Sec. IIB. Rydberg Rabi pulses are
applied to the control or target atoms with Gaussian power
fluctuations of FWHM of 1% and 2% for Rydberg red and
blue lasers, respectively. An atom at position r = (x,y,2)
with velocity v = (v,,v,,v,) experiences a Rydberg excitation
pulse with effective Rabi frequency and two-photon detuning
that depends on position and velocity, so 2 = Q(r) and
A, = A,(r,v), as described in Sec. IIB. We also use a fit
to the blockade curve of Fig. 2 to account for variations in
the two-atom interaction strength. Finally, we can monitor the
effect of various error sources by switching them on and off
and comparing the numerical results.

Numerical simulation of the CNOT gate demonstrated in
Ref. [17] proceeds as follows. We start with the initial density
matrix for both atoms with population of 0.98 in either
[1) or |0) and population of 0.02 in |g) to account for an
optical pumping error of 1% and atom loss of 1% before the
CNOT pulses. Then we perform Monte Carlo simulations of
the experiment with the actual experimental parameters from
Ref. [17], as listed in Table I. Next, we solve the time evolution
of the master equation (13) for the C; pulse sequence of
Fig. 3(a) with 7w /2 pulses on the target atom before and after the
C7 to give a CNOT operation, {(5 ), e, Zgap, (27 )t tgaps TTes (5 )i}
as in [17], and average over the four input states (]|00),
|01), |10) and |11)) to get the averaged gate errors, where

042310-5



ZHANG, GILL, ISENHOWER, WALKER, AND SAFFMAN

TABLE I. Experimental parameters used in Ref. [17] as well as
in the numerical simulations.

Experimental parameter Symbol Value
FORT wavelength Ay 1064 nm
FORT waist Wy|y 3.4 um
FORT trap depth Up/kp 4.5 mK
FORT separation d 8.7 um
Atom temperature T, 175 uK
Rydberg level [r) 97ds,,
Rydberg state radiative lifetime T 320 us
Blockade shift at 0 uK Bo/27 20 MHz
Rydberg red power 2.4 uW
Rydberg red waist Wyly, R 7.7 um
Rydberg red detuning A, /27 —2 GHz
Rydberg blue power 13 mW
Rydberg blue waist Wy|y, B 4.5 pm
Rydberg red Rabi frequency Qr/2m 118 MHz
Rydberg blue Rabi frequency Qp/2nm 39 MHz
Rydberg Rabi frequency Q/2r 1.15 MHz
Magnetic-field fluctuation o 2.5 uT
Rydberg red power fluctuation 1%
Rydberg blue power fluctuation 2%

(5) is a ground Raman /2 pulse on the target atom and
teap = 500 ns is the switching time between control and target
atom sites. Here, we treat the ground Raman pulse as an
ideal unitary operation since it is substantially less sensitive to
the various error sources than operations involving Rydberg
states.

The probability truth table error is defined by £ =1 —
Tr[pizealpct], where p is the numerical simulation result. We
should point out that the switching time g, is short enough
that it has little effect on the CNOT truth table fidelity, but
has a strong effect on the entanglement fidelity because the
motion of Rydberg excited atoms between excitation and
deexcitation pulses leads to a stochastic phase that degrades the
entanglement, as was pointed out in [15]. Finally, we average
over 100 evolutions of the master equation, and the final results
are shown in Table II.

To model the entanglement, we prepare the control atom
in state |¢) = Lz(|0) + i|1)) and target atom in state |¢t) = |1).
Then we follow the same approach as for the CNOT truth table
error analysis by solving the time evolution of the master
equation (13). From the final density matrix after the pulse
sequence, we can extract the Bell state fidelity F' defined as
F =Tr[ piﬂeal Oct], Where pigeql 18 associated with the maximally

entangled Bell state |B;) = LZ(IOO) + |11)). We then average

over 50 evolutions of the master equation using Monte Carlo
simulation of all the error sources as mentioned before, and
obtain the final Bell state fidelity F = 0.54 without atom loss
correction and fidelity F = 0.67 after atom loss correction
as shown in Table II, which is consistent with our measured
entangled fidelity of 0.71 in [17]. We assume that the atom
loss due to collisions with untrapped background atoms is
independent of the CNOT pulse sequence (about 4 us), which
is much shorter than the trap lifetime (several seconds), so the
background loss is simply considered as a scaling factor for
the final fidelity without atom loss.
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TABLE II. CNOT probability truth table and entanglement fidelity
results. The upper section of the table gives error budget values used
in the numerical simulations. These values are based on laboratory
measurements and theoretical estimates as described in [17]. The
lower section gives measured results from [17] and numerical values
from solving Eq. (13).

Error
Parameter used in numerical simulation budget
Optical pumping 0.02
Atom loss before CNOT pulses 0.02
Spontaneous emission 0.018
Rydberg decay error 0.003
Blockade error at 0 uK 0.0004
Blockade error at 175 uK 0.006
Doppler Broadening at 175 uK 0.003
Laser power fluctuation 0.0001
Magnetic-field fluctuation 0.0002

Measured  Numerical

results simulation
Background loss (two atoms) 0.19
CNOT trace loss (1 — Tr[o¢]) 0.01
CNOT probability truth table
Raw fidelity 0.74 0.75
Background loss corrected 0.91 0.93
Background and trace corrected 0.92 0.93
Bell state
Raw fidelity 0.58 0.54
Background loss corrected 0.71 0.67
Background and trace corrected 0.71 0.67

In Fig. 4, we compare the numerical simulation results for
the CNOT probability truth table with the analytical results of
Eq. (6) for different parameters. Both the decoherence error E;,
[the first term in Eq. (6)] and imperfect blockade error E g [the
second term in Eq. (6)] agree well with the numerical results
in the small gate error limit. The total gate error with all the
error sources is 6.5% in agreement with the atom loss corrected
fidelity of ' = 0.92 and the simple gate error analysis reported
in [17]. As shown in Table II, the two main error sources
limiting the gate fidelity are the spontaneous emission from
state | p) and imperfect Rydberg excitation and blockade due
to finite atomic temperature (not accounting for the atom
loss before the CNOT pulses, the imperfect optical pumping
and other losses that are independent of the CNOT pulse
sequence).

The comparison of Monte Carlo master equation simula-
tions with experimental data shows that the error sources listed
in Table II are able to account for measured results with an
accuracy of about 1% as regards the CNOT truth table and about
5% as regards the Bell state fidelity. The Bell state fidelity is
much lower than that of the CNOT truth table due to dephasing
that occurs while the control atom is Rydberg excited. As has
been discussed in [15,24], the main sources of the Rydberg
dephasing are magnetic-field noise and Doppler effects. In
order to significantly reduce these errors it will be necessary
to work with colder atoms, less magnetic-field noise, and faster
Rydberg excitation pulses.
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FIG. 4. (Color online) Comparison between intrinsic gate errors
from Eq. (6) for different parameters and numerical simulations.
In the first column [(a),(c),(e),(g)], Bo/27 = 10 MHz, Qy/27 =
1.15 MHz, 1o =300 us; in the second column [(b),(d),(f),(h)],
Bo/2m = 10 MHz, Qy/27 = 0.575 MHz, 1ty = 300 us. E, is the
decoherence error due to finite Rydberg lifetime [the first term in
Eq. (6)] and Ej is the imperfect blockade error [the second term
in Eq. (6)]. The black dotted points are the results of the numerical
simulations and the blue lines are the results from Eq. (6) with the
same parameters.

B. Simulated quantum process tomography

The experimental results obtained to date from Rydberg
blockade experiments on pairs of atoms are far from pre-
dicted error thresholds for a practical fault-tolerant quantum
computer which range from 10~ to 1072 in different models
[19,20]. In order to characterize more completely the fidelity
and usefulness of Rydberg blockade for quantum computing
applications we need to perform quantum process tomography
(QPT) [2,29] of the Rydberg blockade mediated quantum
blackbox process. QPT has been demonstrated with several
different physical systems including linear optics [30], trapped
ions [31], and superconducting circuits [32]. Here, we perform
numerical simulations of QPT with maximum likelihood
estimation of tomographically reconstructed density matri-
ces [30] for the Rydberg-blockade C; gate. We limit the
simulations of intrinsic errors to the simpler C gate since
it has been demonstrated [33] that the additional single-qubit
pulses needed to implement a CNOT can be performed with
errors at the ~10* level.

Since our goal is to determine the minimum possible gate
error that can be reached using Rydberg blockade we only

PHYSICAL REVIEW A 85, 042310 (2012)
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[n,r> ; Bn,n
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control target

FIG. 5. (Color online) Level diagram accounting for neighboring
Rydberg levels of control and target atoms. The Rydberg laser is
tuned to excite |1) to |n,r). The red dashed lines show the energy that
qubit state |0) is excited to, and B, , is the positive blockade shift
between a control atom in |nr) and target atom in |n'r).

account for intrinsic gate errors as described in Sec. III and
assume all additional technical errors are negligible. This
corresponds to a situation where the atoms are cooled to
their motional ground state so there is no Doppler dephasing
during Rydberg excitation, position-dependent variations in
Rabi frequencies, or ac Stark shifts. We assume there is no
spontaneous emission from the intermediate |p) level during
Rydberg excitation. This could be achieved using one-photon
excitation of Rydberg |p) states, or by using sufficient laser
power to detune very far from the intermediate |p) level. We
also assume that dephasing due to time-varying magnetic fields
is negligible.

Accounting only for intrinsic gate errors the analytical
estimates of Sec. IIT show that E ~ (Br)~%3. At room
temperature the Rydberg lifetime scales as T ~ n> with n the
principal quantum number and in the heavy alkali-metal atoms
Rb and Cs the van der Waals Blockade interaction scales as [34]
B ~ n!'2. Thus, we expect the gate error to scale as E ~ n=28/3
so that choosing large n should give arbitrarily small errors.

This argument breaks down when n 2 100 since the energy
spacing of levels n and n + 1 becomes comparable to B or w1,
as shown in Fig. 5. This puts a limit on the effective blockade
shift that can be achieved at large n and limits the error
floor. For the Cz pulse sequence acting on the four possible
input states in the computational basis {|00),|01),[10),|11)}
excitation is blocked three times due to wjg, once due to
wio + B and once due to B alone. It is necessary to choose
the Rydberg level spacing and blockade shift such that the
excitation suppression is as large as possible for all three
cases. The above description is valid for Rydberg p3/,, and
ds/» states since by using o polarized light the qubit states
are only coupled to these Rydberg states [35]. For sy, states
the situation is worse since the Rydberg lasers simultaneously
couple to both 51/, and d3»,ds, states.

In order to quantitatively account for coupling to more
than one Rydberg level we have extended the basis used for
simulations to the set {|0),|g),[1),|72) |r1),|r)}, where |ry),|72)
are additional Rydberg levels. Finding optimal states is now
a multiparameter optimization problem. Details of how this
is done, and the parameters of the chosen 1,2, p32 and ds»
states, are given in the Appendix. In this extended basis, but
without the | p) level, the Hamiltonian and Liouville operators
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corresponding to Egs. (14) are

—w10 0 0
0 0 0
0 0 0
Hepp =1 ,
Qgcll)/2 0 QE’C|0/2
Qep/2 0 ey/2
Qew/2 0 Qpy/2
1 0
glorT
0 %prT
0 0
Ly = vr | |
_Eprzo _Eprzg
—%Prlo _%prlg
—%Pro _%prg

with o, = prr + Pryr, + Pror, the total Rydberg excited pop-
ulation. The two-atom operators are

HctzHc®It+Ic®Ht+Bcta

where Li=L. QL+ 1. ®L, Iy are 6x6 iden-
tity matrices, and B¢ =% diag[0,1,By,r,,Brr, ,Bror, 0,0,0,
B:r, By, Bryr,0,0,0,Br, , By, ,Bie] is a Rydberg blockade ma-
trix where 0y is a 21 zero list. We assume that the Rydberg
states decay directly back to the 8 ground sublevels of
Rb with equal branching ratios of 1/8. For Cs atoms the
factors of 1/8,3/4,1/8 on the diagonal of (15b) become
1/16,7/8,1/16. The Rabi frequencies for Rydberg excitations
to states |r),|r1),|r,) are taken to be equal Q = Q' = Q" for
Rydberg np and nd cases. For Rydberg ns states we have
|ry = |ns), |r1) = |n — 1,s), |r) = |n — 2,d), for which Q'
Q,Q” = 1.31 Q. Further details are given in the Appendix.
For simplicity we assume the decay rate y, is the same for all
Rydberg levels. It is straightforward to include state-dependent
decay rates in the code, but this has a negligible impact on the
results since there is very small excitation of the secondary
Rydberg states. For simplicity we use the decay rate of the
targeted Rydberg state for all states.

As discussed in Ref. [36], there is no universally agreed-
upon measure for comparing real and idealized quantum
processes [37]. A widely used measure of quantum process
fidelity is the trace overlap fidelity Fo, or error Eg = 1 — Fp,
which are based on the trace overlap between ideal and
experimental (in our case simulated) x process matrices.
Another error measure Ep is defined as the trace distance
between the ideal and simulated matrices. We have quantified
process errors using the trace overlap and trace distance as

(16)

~

Eo = 1 — Tr?[\/ /Xsim Xian/ Xsim (17a)
1
Ep = STi[V(tia = sim) Otia = Xsim)].  (17b)

where xiq is the ideal process matrix and ygin is the simulated
physical x matrix found from QPT accounting for intrinsic
gate errors as described by Egs. (15) and (16). We use a
maximum likelihood estimator to extract a physical x matrix
from the QPT simulations [30].

Q
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/2 Q2

(:It)/z Q(:?k\t)
0 0 0
Qen/?2 Qen/2 Qy/? (152)
— Wy, 0 0
0 _wr,r] 0
0 0 0
0 —3P0,  —3P0n —5P0r
0 _%pgrz _%pgi’l _%pg"
1 1 1 1
§1,0rT —3Pl, T3Pl T3PIr (15b)
—3Pn1 —Pryry —Prary ~Pror
_%prll —Prir, —Priry —Prir
_%prl —Prry ~Pr.ry —Prr

In Table III we present the errors found from simulated QPT
for the atomic states in Table IV. The process tomography
errors tend to be 5-10 times larger than Eg,, which are
the errors estimated in the Appendix for two-qubit product
states in the computational basis. This is to be expected since
the analytical estimates are derived from the probabilities
of the gate succeeding and do not account for output state
phase errors. The trace loss quantifies the population in states
outside the computational basis at the end of the gate sequence.
These errors are due to spontaneous emission from Rydberg
states and imperfect blockade which leaves atoms Rydberg
excited at the end of the gate. Trace loss errors account for
about half of the process error. While the process error based
on trace overlap Eg is less than 0.003 for all states listed,
the error as measured by the trace distance Ep is significantly
larger.

Some insight can be gleaned as to why the trace distance
gives larger errors than the trace overlap as follows. The Jaksch
et al. pulse sequence produces an imperfect Cz gate which can
be written in the computational basis as

10 0 0
0 -1 0 0

“z2={o 0o -1 o | (18)
0 0 0 —e*

where ¢ = 7Q/2B is a small phase error in the strong
blockade limit. As an example, Fig. 6 shows the ideal x matrix
and the difference between the ideal and simulated y matrices
for the standard pulse sequence leading to (18). From Figs. 6(c)
and 6(d), we can see that the error in the imaginary part of the
X matrix is much larger than that in the real part of the x
matrix. This is due to the fact that the real part is related to the
amplitude errors for Rydberg blockade which are proportional
to ¢2, but the imaginary part is related to the phase error, which
scales as ¢.

Following the procedure for QPT in Ref. [2] we can
calculate the ideal and imperfect x matrices from (18), and
using Eqgs. (17) we find the trace overlap and trace distance
errors

Eo

3[1_ ]~3 » (Y 198)
3 cos(¢) —1—6¢ §>s (192
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TABLE III. Gate errors from simulated QPT for several Rydberg states of 8Rb and '33Cs. The reported errors are E.,, the analytical
estimate found in the Appendix using computational basis states, trace loss, which is the sum of populations outside the computational basis at
the end of the gate sequence, Eq (Ep) trace overlap (distance) errors from Eqgs. (17) using the Jaksch ez al. pulse sequence [Fig. 3(a)], and Ej,
the trace distance error found using the modified pulse scheme of Fig. 3(b). For the s and p states we used the optimal Rabi frequencies found
in the Appendix. For the d states we found that the Eo, E}, errors were reduced by about 25% by using Rabi frequencies about 15% lower than

those estimated in the Appendix.

87Rb Cs
Rydberg state 76])3/2 124]]}/2 123d§/2 82S1/2 70p3/2 1 12p3/2 1 12d5/2 8051/2
Rabi frequency 2/27 (MHz) 38.5 16.3 15.3 19.2 471 19.5 20.4 21.4
Ey 0.00015 0.00013 0.00016 0.00032 0.00013 0.00011 0.00018 0.00032
Trace loss 0.00050 0.00062 0.0010 0.0013 0.00046 0.00066 0.00073 0.0013
Eo 0.0012 0.0013 0.0018 0.0023 0.0011 0.0015 0.0014 0.0025
Ep 0.0058 0.0047 0.0041 0.0071 0.0032 0.0050 0.0067 0.0081
E} 0.0012 0.0015 0.0016 0.0024 0.0013 0.0020 0.0018 0.0028
J3 J3 Q finding ways to minimize them, as we have done here using
Ep = B sin(¢/2) ~ T¢ ~ B (19b) a modified pulse sequence, is facilitated by checking several

We see that Eg ~ ¢2, while Ep ~ ¢ which verifies that the
trace overlap is not sensitive to the imaginary part of x, which
has linear phase errors, whereas the trace distance is sensitive
to these errors.

Using the modified sequence of Fig. 3(b) we can correct
the leading order linear term in the phase error. Doing so has
negligible effect on the trace overlap since it is only sensitive
to amplitude errors at O(¢?). We do not report trace overlap
errors for the modified pulse sequence in Table III since they
are unchanged. However, there is a large reduction in the trace
distance error using the modified pulse sequence as can be
seen from the values of Ej, in the last row of the table. It has
been common practice in experimental studies of quantum gate
process fidelity to use the trace overlap as a reliable measure
of the gate fidelity. The results shown in Table III highlight
the fact that the trace overlap may give an overly optimistic
view of the gate performance, since the trace distance gives
larger errors. Identifying what type of errors are present and

error measures.

Finally, we note that besides the intrinsic gate error sources,
the dipole-dipole interaction will cause a momentum kick to
both atoms [1] which can excite a trap state without changing
the internal state of the atoms when they are in Rydberg states.
The perturbative transition probability is bounded by p; <
(3n2At/8B)?/2, with At =27 /Qandn = a/d < 1, where
a is the initial width of the atomic wave function determined by
the trap and d is the trap separation. For typical gate parameters
and n = 1/50 we find that p; < 3 x 1077 for Rb Rydberg
124 p3/» states which is much smaller than the QPT errors
in Table III. Thus, errors due to momentum transfer between
Rydberg excited atoms have a negligible effect on the gate
fidelity.

V. DISCUSSION

An important motivation for performing detailed calcu-
lations of gate errors is to determine if Rydberg blockade

TABLE IV. Parameters of the Rydberg states used for QPT simulations. The scaling parameter b” is defined as b” =B, ,_,/B,, for

nps,nds), states and b” = B;,

n,n—

1/Bun for nsy ), states.

87Rb Cs
Rydberg state 76])3/2 ]24[73/2 ]23d5/2 8251/2 70]73/2 1 12[)3/2 1 ]st/z 8051/2
wio/27 (GHz) 6.8 6.8 6.8 6.8 9.2 9.2 9.2 9.2
Wy n—1/27 (GHz) 17.0 3.7 3.7 13.7 23.0 5.2 5.1 15.3
Wn /27 (GHz) 75 75 10.6 10.3
), /27 (GHz) —10.4 —85
), /27 (GHz) 2.9 6.5
T (us) 223 616 524 212 211 593 367 191
d (um) 1.8 4.5 5.0 2.5 14 3.2 3.1 2.2
B,./27n (GHz) 3.45 2.0 1.9 33 4.4 2.6 2.5 3.9
a = wyu—1/010 2.5 0.55 0.54 2.0 2.5 0.57 0.55 1.7
a =w),,_ /oo -15 —0.93
a’ = w, ,_,/wo 0.43 0.70
b=B,,/wn 0.51 0.29 0.27 0.48 0.48 0.29 0.27 0.43
b =B,,-1/Bu 1.1 1.0 0.77 0.95 1.2 1.2 0.98 0.75
b’ 1.1 0.66 0.08 1.2 0.95 0.73
b =B, 2/Bu 0.15 0.71
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FIG. 6. (Color online) Ideal y;q matrix and the difference between
ideal xiq and simulated ), matrices for QPT of the C gate using the
Jaksch et al. pulse sequence [1] for ¥Rb 112 p, , states with /27 =
27.6 MHz. (a) Real part of x4, (b) imaginary part of x4, (c) difference
of real parts, Re[xia — Xsim], and (d) difference of imaginary parts
Im[xiq — Xsim]-

could be used to build a fault-tolerant, large-scale quantum
computing device. In order to answer that question it is
necessary to make a connection between the fidelity measures,
and the error limits for fault tolerant architectures that have
been calculated theoretically. Threshold calculations typically
proceed by assuming that an ideal unitary operator Uy de-
scribing the time evolution of the quantum circuit is corrupted
by an error operator U, with a small probability €, 0 < € < 1
so that the actual gate is described probabilistically as

U=(—e)Uq+ eUy.

Depending on what assumptions are made about the types
of error operators U, that may occur, possible correlations
between errors at different sites, and the overall system
architecture, different threshold values €3 can be found.
Provided € < ey, it is, in principle, feasible to build an
arbitrarily large quantum processor. Calculations that make
a minimum number of assumptions about U,, result in very
low thresholds, €5, ~ 1073 [38]. Other calculations that make
more restrictive assumptions result in higher thresholds. For
example, €y > 0.03 in a model where the U, are Pauli
operators [19].

In order to relate the fidelity measures to thresholds for
fault tolerance it is necessary to make explicit the connection
between the process fidelity and the error probability €, as has
been done for photonic quantum gates [39]. We can estimate
the lower bound on € given a process fidelity as follows.
Replace the process matrix in Egs. (17) by xsim — (I —

PHYSICAL REVIEW A 85, 042310 (2012)

€)Xid + € Xer, Where x.r is the process matrix corresponding
to the operator U,;.

To derive lower bounds on € we substitute the modified
expression for xgn, into (17) to get

Eo = €Ty’ [\/ V(g = xeo) xiav/ (Xia — xeo} +0().

The right-hand side is maximized for x., = — xig and assuming
small € we find Eg < 2¢. We can therefore use the trace
overlap to bound the error probability from below according
to

Eo
€0 =2 T (20)
Following the same steps for the trace distance gives
ep = Ep. (21)

These bounds result from assuming € < 1 and a worst-case
error process with Tr[xiqxer] = —1. Our calculated fidelity
errors given in Table III are O(1073) and we therefore have
placed lower bounds on € of O(1073), which is below the
threshold for some fault-tolerant architectures.

Unfortunately, this does not prove fault tolerance. We have
bounded € from below, but the actual € for our gates may be
higher. In addition, threshold calculations make assumptions
about the types of errors that may occur, whereas our
calculations of process fidelities are based on an independent
physical model of the gate. In order to claim fault tolerance
we would have to verify that the errors occurring in our
simulations are compatible with the assumptions made in the
threshold calculations. This has only been attempted for linear
optics quantum gates [39] and is beyond the scope of the
present paper. All we can say based on the results obtained
here is that it is plausible that the fidelity of Rydberg blockade
gates is sufficient to meet the threshold for fault tolerance in
an appropriate architecture, but this has not been explicitly
demonstrated.

In conclusion, we have performed a detailed analysis
and numerical simulation of our recent demonstration of a
Rydberg blockade mediated CNOT gate between two indi-
vidually addressed neutral atoms. Good agreement between
the model and experimental results allows us to identify the
leading error sources limiting the CNOT truth table fidelity as
imperfect state preparation, spontaneous emission from the
intermediate state during two-photon Rydberg excitation, and
imperfect Rydberg excitation and blockade due to variations
of the atomic position at finite temperature. The fidelity of
entangled Bell states created so far with Rydberg blockade is
predominantly limited by ground-Rydberg dephasing due to
Doppler broadening and magnetic-field noise.

We have also found intrinsic error limits for Rydberg states
which are accessible by one- or two-photon excitation through
dipole allowed transitions. We show that the gate error cannot
be made arbitrarily small by addressing higher-lying Rydberg
levels due to off-resonant coupling to neighboring levels
which reduces the blockade effect. We identified the optimum
blockade strength in the presence of neighboring Rydberg
levels and showed using simulated QPT that for both 8’Rb
and Cs atoms states can be found with process errors below
0.002, provided we use a modified pulse sequence to correct
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small phase errors. The phase error correction assumes that the
atoms are in the motional ground state of the optical traps. Our
identification of optimum parameters including coupling to
neighboring Rydberg levels is only approximate and it may be
possible to further reduce the gate error with a more extensive
parameter search.

While we have focused on the Rydberg blockade mecha-
nism, the direct-interaction Rydberg phase gate [1], which uses
simultaneous excitation of both atoms to a Rydberg level, may
also be a route to high-fidelity operation. Recent analysis of
this gate using optimal control theory has identified parameters
for which the gate error approaches 1073 although a rigorous
process error was not calculated [40]. We note that also the
phase gate which operates with the ordering € > B will be
subject to a limit on how high n can be due to off-resonant
excitation of neighboring Rydberg levels, as illustrated for the
blockade gate in Fig. 5.

Our error results assume operation in a room-temperature
environment. The lifetimes of the p;,, states increase by
about a factor of four in a 4 K He cryostat [41], which
would result in a reduction of the gate error by a factor of
~2.5 to a level below 1073, Even lower error levels could,
in principle, be reached using circular Rydberg states that
have orders of magnitude longer lifetimes, although there
are serious technical challenges connected with high-fidelity
excitation and deexcitation of these states.
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APPENDIX: CNOT TRUTH TABLE ERROR ESTIMATES
WITH MULTIPLE RYDBERG LEVELS

In this appendix we present analytical estimates for the
CNOT truth table including off-resonant excitation of multiple
Rydberg levels. These estimates were used to find parameters
for the process tomography calculations in Sec. IV.

1. Rydberg np;), states

Alkali atom npj;; or nps; levels can be reached by
one-photon excitation from the ground state. The fine structure
splitting of high-n Rydberg levels is relatively small, only
94 MHz for the Rb 100p states. This small splitting is
problematic since resonant coupling to say 100p;,, with a
Rabi frequency of ~10 MHz would give errors at the 0.01
level due to off-resonant coupling to 100p3,,. We therefore
assume that the qubit state |1) is mapped onto the stretched
ground state f = I +1/2,my = f before and after Rydberg
operations. When the stretched state is excited with o light
angular momentum selection rules prevent coupling to np ;.
We therefore only account for coupling to npzp,m; =3/2
states.

Referring to Fig. 7 we assume the spacing between neigh-
boring levels w, ,_1, satisfies w, ,_1 > wio. This corresponds
toRydberglevels withn < 100 for the heavy alkali metals. The
leading contributions to blockade errors for the computational
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FIG. 7. (Color online) Off-resonant Rydberg excitation for p
states with w, ,—1 > wo. The solid circles indicate the energies where
the atoms are excited to with the long-dashed red lines corresponding
to excitation of an atom starting in |0).

basis states are
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P L >
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The average blockade error is Eg = {(Eoo + Eo1 + Ejo +
Ei1). We introduce two dimensionless parameters a =
Wnu—1/w10 and b = B, ,,/w;o. Parameter a takes on discrete
values as a function of Rydberg level n while b can be
adjusted to minimize the error at fixed n by changing the
interatomic separation d. The blockade interaction between
levels of different n is also a function of d, but to a good
approximation we can put B, ,_; = ¥'B,, ,, with b’ a constant
independent of d. We neglect contributions from coupling to
level n 4 1 since the solutions found below have b ~ 0.5 and
the average error from n + 1 states only contributes at the 10%
level.

The blockade error is minimized by ensuring that all
undesired excitations are detuned as much as possible. This
corresponds to w, ,— very large but this is not a useful solution
since it implies small » and large spontaneous emission errors.
In order to find a reasonable value for n, consider Fig. 8, which
shows the blockade error for selected values of a,b. We see that
fora ~ 2.5 and b ~ 0.5 the error is not far from the minimum
possible. The scaled blockade shift » could be made larger,
but this would require very small values of the separation d,
which implies difficulty in individual addressing of the atoms.

The above conditions are matched quite closely for 8’Rb
(Cs) using nps3; states with n = 76(70). For ¥Rb with
n =76atd = 1.8 um we have w7575 = 2m x 17.0 GHz,a =
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FIG. 8. (Color online) Blockade error scaling for p states with
Wn.n—1 > i as a function of a,b with Q/w;p = 0.005 and b’ = 1.

2.49, b =0.51, b’ = 1.07, which gives Ez = 0.63 x 107*
at Q/wip = 0.005. For Cs with n =70 at d = 1.35 um
we have w7060 = 2m % 23.0 GHz, a = 2.50, b = 0.48, b’ =
1.23, which gives Ez = 0.66 x 10~* at Q/w¢ = 0.005.

We can estimate the CNOT truth table error averaged over
the computational basis states using the same procedure as
in Sec. III. Including the spontaneous emission errors from
Eq. (6), neglecting corrections of order */w?),Q2*/B?, the
average error is

where we have written Ep = EpoQ?. The optimum Rabi
frequency is Qop = (%)1/ 3 m, which gives the minimum
error for the computational basis states,

1/3
_3 (7m)*3 E 4,

P (Al)

cb

For 3Rb T6p32 with T =223 us we find Qqp = 27 x
38.5 MHz (Qpi/wio = 0.006) and Eq = 1.5 x 107*. For
Cs 70p32 with T =211 pus we find Qg = 27 x 47.1 MHz
(Qopl/wlo =0.005) and E, = 1.3 x 1074

It is also possible to consider states with higher n such that
Wy.n—2 > W19 > Wy ,—1.In this case, which is shown in Fig. 9,
we must include off-resonant coupling to a third Rydberg level
n — 2. The effective blockade shift is now smaller than for the
lower n states but there is the advantage that the Rydberg
lifetime is longer. The blockade errors for the computational

00 01
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FIG. 9. (Color online) Off-resonant Rydberg excitation for p
states with w, ,_; > w9 > w,,_». The solid circles indicate the
energies that the atoms are excited to with the long-dashed red lines
corresponding to excitation of an atom starting in |0).
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FIG. 10. Blockade error scaling for p states with w,, ,_» > w9 >
Wy n—1 as a function of a,b with Q/w;p = 0.005, w, ,—2 = 2w, 4—1,
andb' = 0" =1(B, ,_» = "B, ). The contours are labeled with E
in units of 107*.

basis states are

Eop = 3 13 L :|
2 [ (@10 — @pn=1)?  (@pn—2 — @10 ]’
Eo = %Eoo,
3
Ey = ! _ 13
2 [(@10 = @pon—1+ Bppu_1)?
o2
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En = ! [9_2 + 13 ] .
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The average blockade error Eg = {(Eoo + Eo1 + E1o + E11)
is shown in Fig. 10.

The error is minimized for a ~ 0.57 and b ~ 0.28. These
conditions are matched quite closely for ’Rb (Cs) using
nps states with n = 124(112). For Rb with n = 124 at
d =4.5 pm we have wiz4,123 = 2w x 3.73 GHz, 24,1220 =
2w x 7.55 GHz, a = 0.55, b =0.29, b’ = 1.05, b" = 1.06,
which gives Ep = 3.2 x 10~* at Q /w19 = 0.005. For Cs with
n =112 atd = 3.2 um we have w2111 = 27 x 5.23 GHz,
112,110 = 2w x 10.6 GHZ, a = 057, b= 029, b = 1.19,
b" = 1.18, which gives Ez = 3.4 x 107* at Q/w;o = 0.005.

Using Eq. (Al) we find the following CNOT truth table
error estimates. For 8’Rb 124p3/, with T = 616 us we find
Qopt = 27 x 16.3 MHz (Qqp/ @10 = 0.002) and E¢, = 1.3 x
10~*. For Cs 112p3,, with T = 593us we find Qo = 27 X
19.5 MHz (Qop /@10 = 0.002) and Egp, = 1.1 x 1074,

We see that the truth table error estimates are slightly
less than for the lower n situation of Fig. 7. An additional
advantage of using higher n states is that the optimal blockade
shift is reached with a larger d ~ 3-4 um, which may
help to minimize qubit addressing crosstalk in an actual
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FIG. 11. (Color online) Off-resonant Rydberg excitation for s
states with w, ,—1 > wjo. Primed quantities refer to frequencies or
blockade shifts between s/, and d3,, states. The solid circles indicate
the energies that the atoms are excited to with the long-dashed red
lines corresponding to excitation of an atom starting in |0).

implementation. For convenience we have summarized all
parameters for the states used in Table IV.

2. Rydberg nds,, states

The issue of small fine structure splitting of the p states
discussed above also applies to the nds,;,nds,, states. There
are two ways of avoiding this problem. As with excitation
of the np states we may assume two-photon excitation from
the stretched ground state with o light which only couples
to nds;y,m; = 5/2 states. Alternatively if the first leg of the
excitation is made via the D1 transition (5s1/2-5pi,> in Rb
or 6s1/2-6p1,2 in Cs) then only the ndz/»,m; = 3/2 states can
be reached. Since we are setting the separation d to give the
desired blockade strength the only difference in the gate error
using nds,, or nds; states is due to differences in the lifetime.

PHYSICAL REVIEW A 85, 042310 (2012)

The lifetimes differ by only a few percent [41] and we therefore
simply consider nds;, states. The choice of optimum states
and error analysis then follows that in Sec. 1 of this appendix.
We have summarized the parameters for the states used in
Table IV.

3. Rydberg nsy, states

The nsy,, states have no fine structure but there is an
additional complication since it is not possible to use angular
momentum selection rules to couple to ns;,, states, but not
nds, or nds; states. We must therefore consider off-resonant
coupling to additional Rydberg levels. The situation for
Wy n—1 > wjo is shown in Fig. 11. The leading contributions
to blockade errors for the computational basis states are

3 QZ Q/Z QZ
Ep=3|—5+ + ;

2w}y (@o—,, )  (@pn1 —®10)
(A2a)
2 9/2
Ey = -E P — A2b
or = 3 Eo + 2, (A2b)
Q/Z 92
Ey = +
10 ;12,71—2 2(wn,n—l - Bn,n—] - (1)10)2
9/2
+ s A2c
2((010 - w;,n—Z + B:'L,n—Z)z ( )
Q/Z 92 Q/Z
En=——+ + , . (A2d)
CUnz,an ZB%H 2(w:t,n—2_ n,n—2)2

Here ', B’ refer to frequencies and couplings between s, »
and d3, states and ' is the Rabi frequency for nds, excitation
via the D1 transition from the ground state so that we need
only consider nds;, states. We introduce dimensionless pa-
rameters a = wy ,—1/wio, a' = W), ,_/wi0, a" = w, ,_»/Wio0,
b= Bn.n/wIO’ b= Bn,n—l/Bn,n’7 b = B,/Ln,I/Bn,’n, b =
B;l,n—z/Bn,n’ and ¢’ = Q'/Q. Using o,,0_ polarized exci-
tation light for the ground-D1 and D1-Rydberg transitions
¢’ = 1.31. Since |w}, ,_| > |w)], ,_,| we have neglected terms
due to coupling to n — 1,d3)> in ’(A 3). Additional checks with
this level included give not more than 5% increase in the error
averaged over the computational states. Since the computa-
tional cost of adding an additional Rydberg level in the master
equation simulations is large, we have neglected this small
correction and performed master equation simulations with the
three Rydberg states, |r) = |n,51,2),|r1) = [n — 1,512),1r2) =
In —2,d3).

Numerical checks using Eqs. (A2) and (A1) were used to
select the states listed in Table IV.
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