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Z-scan formula for two-level atoms
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Abstract

An analytical expression for the Z-scan signal from two-level atoms which show a saturable dispersive and absorp-

tive nonlinearity is derived. An approximate solution is obtained for the normalized transmittance and compared with

numerical calculations.
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1. Introduction

The Z-scan technique was originally developed

in 1989 to measure nonlinear refraction in optical

media [1,2] and has since been used widely for

characterizing many different materials [3–12]. In

Z-scan measurements the transverse profile of a la-

ser beam passing through a nonlinear sample is

investigated. In the presence of self-focusing or

self-defocusing the transmittance of the beam
through a small aperture placed after the sample

yields a dispersion-shaped curve as a function of

the sample position relative to the focal plane of
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the probe beam. The sign and magnitude of the

nonlinear refractive index can be deduced from
the transmittance curve. In many optical media,

including polymers, photorefractive crystals, and

atomic vapors, both the nonlinear absorption

and nonlinear dispersion exhibit significant satura-

tion effects at low optical intensity.

To explain the Z-scan transmittance curve theo-

retical calculations have been made by many

authors [2,5,7,8,10,13–19]. Most studies have con-
sidered nonsaturable Kerr media with or without

nonlinear absorption. A Gaussian decomposition

(GD) method has been successfully used for thin

samples [2,10,19]. Besides Yao et al. [17] intro-

duced a diffraction model for thin sample. Various

methods including an integral transformation [14],

Hankel transformation [7], numerical fitting [8],

variational analysis [16], and GD combined with
ed.
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a distributed lens model [18], were used to calcu-

late the Z-scan transmittance for thick media.

Previous work on Z-scan measurements in hot

atomic vapors [9,11,12], used laser frequencies

from a few hundred MHz to a few GHz away from
the resonance so that the saturation effect was

small. With the aid of laser cooling and trapping,

the Doppler linewidth of the atoms can be reduced

to the order of the natural linewidth or less so that

a much smaller laser frequency detuning of order

tens of MHz can be used. Experimental Z-scan

measurements in this limit of small detuning

[20,21] are influenced by saturation of both the dis-
persion and absorption. Bian et al. [13] studied the

saturable Kerr nonlinearity analytically, but did

not include the effects of nonlinear absorption

which are important near resonance in atomic va-

pors. Oliveira et al. [5] studied numerically the sat-

urable nonlinearity and accounted for the effect of

saturable absorption in an approximate manner.

In this paper, we study the nonlinearity of a
near-resonant two-level atom by extending exist-

ing theories for saturable Kerr media to the case

of general saturable dispersive and absorptive non-

linearity. The theoretical analysis is given in Sec-

tion 2, and the results are compared with

numerical calculations relevant to propagation in

cold atomic vapors in Section 3.
2. Theory

Considering the geometry given in Fig. 1, we

describe a sample with saturable Kerr nonlinearity

and saturable absorption as follows:

DnðIÞ ¼ n2I
1þ I=I sD

; ð1Þ

aðIÞ ¼ a0
1þ I=I sD

; ð2Þ
z0

+z-z

Sample
Lens

Detector

0 d

Fig. 1. Schematic diagram of Z-scan setup.
where n2 is the nonlinear coefficient of refractive

index, a0 is the linear absorption coefficient, I is

the laser beam intensity, and IsD is the saturation

intensity of the nonlinear material. If the beam

intensity is small so I < IsD, we can expand the fac-
tor (1 + I/IsD)

�1 in Eqs. (1) and (2)

1

1þ I=I sD
¼ 1� I

I sD
þ I

I2
sD2

þ � � � ð3Þ

Keeping the lowest two orders we have

DnðIÞ ’ n2I 1� I
I sD

� �
; ð4Þ

aðIÞ ’ a0 1� I
I sD

� �
: ð5Þ

For a TEM00 Gaussian beam with beam waist

w0, the complex field amplitude is

Eðz; rÞ ¼ Ep

w0

wðzÞ exp � r2

w2ðzÞ þ
ik0r2

2RðzÞ � iuðzÞ
� �

;

ð6Þ
where Ep denotes the electric field at the focus,

w2ðzÞ ¼ w2
0ð1þ z2=z2RÞ and RðzÞ ¼ zð1þ z2R=z

2Þ are

the beam radius and the radius of curvature at

z, respectively, zR ¼ k0w2
0=2 is Rayleigh range of

the beam, k0 = 2p/k is the wave number, k is

the wavelength in vacuum, and u(z,t) = arc-
tan(z/zR) is the Guoy phase. What we are inter-

ested in here is the radial phase variation, the

slowly varying envelope approximation applies

and all other phase changes that are uniform

in r are ignored. In the thin-sample limit, the

sample thickness is small enough so that changes

in the beam diameter within the sample due to

either diffraction and nonlinear refraction can
be neglected [1,2]. Define n0 as the linear refrac-

tive index of the medium, the evolution of inten-

sity I = n0�0cjEj2/2 and phase / of the electric

field as a function of z 0 (coordinate inside the

nonlinear sample) are described by a pair of sim-

ple equations:

dI
dz0

¼ �aðIÞI ; ð7Þ

dD/
dz0

¼ DnðIÞk0: ð8Þ
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Substituting Eqs. (4) and (5) into Eqs. (7) and

(8), and solving for I and D/, we get at the exit sur-
face of the nonlinear sample

Ieðz; rÞ ¼
Iðz; rÞe�a0L

1þ Qðz; rÞ; ð9Þ

D/ðz; rÞ ¼ D/0ðzÞ 1þ Qðz; rÞ
a0Leff

� �
e�2r2=w2ðzÞ

1þ Qðz; rÞ ; ð10Þ

where L is the nonlinear sample length,

Leff ¼ ð1� e�a0LÞ=a0;
Qðz; rÞ ¼ �a0Leff Iðz; rÞ=I sD;
D/0ðzÞ ¼ D/0=ð1þ z2=z2RÞ;
D/0 ¼ n2k0IpLeff ; and

Ip ¼ 2P=ðpw2
0Þ

is the peak beam intensity.

The complex electric field amplitude exiting the

nonlinear sample including the nonlinear phase

distortion is now

Eeðz; rÞ ¼
Eðz; rÞe�a0L=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Qðz; rÞ

p eiD/: ð11Þ

By expanding the exponential function of the

phase perturbation exp[iD/]

eiD/ðz;rÞ ¼
X1
m¼0

½iD/0ðzÞ�
m

m!
1þ Q

a0Leff

� �
e�2r2=w2ðzÞ

1þQ

 !" #m
;

ð12Þ
we can write the field Equation (11) as

Eeðz; rÞ ¼ Eðz; rÞe�a0L=2
X1
m¼0

½iD/0ðzÞ�
m

m!

� 1þ Q
a0Leff

� �m
e�2mr2=w2ðzÞ

ð1þ QÞmþ1=2
: ð13Þ

We then use,

1þ Q
a0Leff

� �m
1

ð1þ QÞmþ1=2

¼ 1� I
I sD

� �m

1� a0Leff

I
I sD

� ��m�1=2

¼
Xm
n¼0

X1
p¼0

ð�1Þn
m!ðmþ 1

2
Þp

ðm� nÞ!n!p!

� ða0LeffÞp 1� I
I sD

� �ðnþpÞ

; ð14Þ
where ðmþ 1
2
Þp ¼ ðmþ 1

2
Þðmþ 3

2
Þ � � � ðmþ p � 1

2
Þ is

a Pochhammer symbol [22]. Following the GD

method used by Weaire et al. [23], we can write

down the electric field amplitude at the aperture as

EaðrÞ ¼ Eðz; 0Þe�a0L=2

�
X1
m;p¼0

Xm
n¼0

ð�1Þnðmþ 1
2
Þp

ðm� nÞ!n!p! ½iD/0ðzÞ�
m

� ða0LeffÞpsnþp

ð1þ z2=z2RÞ
nþp

wmnp0

wmnp

� exp � r2

w2
mnp

þ ik0r2

2Rmnp
� ihmnp

( )
: ð15Þ

We define s = Ip/IsD as the on-axis saturation

parameter, d as the propagation distance in free

space from the nonlinear sample to the aperture

plane and g = 1 + d/R(z), the other parameters are

w2
mnp0 ¼

w2ðzÞ
2ðmþ nþ pÞ þ 1

;

w2
mnp ¼ w2

mnp0 g2 þ d2

d2
mnp

 !
;

dmnp ¼
1

2
k0w2

mnp0;

Rmnp ¼ d 1� g

g2 þ d2=d2
mnp

 !�1

;

hmnp ¼ arctan
d=dmnp

g
:

ð16Þ

From Eq. (15), the transmittance of the aper-
ture is calculated as

T ðzÞ ¼
R ra
0
jEaðrÞj2r drR ra

0
jEðz0; rÞj2r dr

; ð17Þ

where z0 is the distance between the probe beam

waist and the aperture.

The on-axis electric field at the aperture can be

obtained by setting r = 0 in Eq. (15)

Eað0Þ ¼ Eðz; 0Þe�a0L=2½F 0 þ iD/0ðzÞF 1

� D/2
0ðzÞF 2 þ r�; ð18Þ

where r is the summation of terms proportional to

(D/0)
m with m P 3 and
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F m ¼
Xm
n¼0

X1
p¼0

ð�1Þnðmþ 1
2
Þp

ðm� nÞ!n!p!
ða0LeffÞpsnþp

ð1þ z2=z2RÞ
nþp

1

gþ i d
dmnp

:

Substituting g, dmnp and x = z/zR into Fm above we

get

F m ¼
Xm
n¼0

X1
p¼0

ð�1Þnðmþ 1
2
Þp

ðm�nÞ!n!p!
zR
d

� �

� ða0LeffÞpsnþp

ðx2þ1Þnþp�1½zRðx2þ1Þ=dþ xþ ið2ðmþnþpÞþ1Þ�
:

ð19Þ

From Eqs. (18) and (19), the on-axis transmit-

tance ignoring r is

T ðzÞ ¼ jEað0Þj2

jEðz0;0Þj2

¼ z20=z
2
R þ 1

x2 þ 1
e�a0LjF 0j2 1þ iD/0ðzÞ

F 1

F 0

�D/2
0ðzÞ

F 2

F 0

����
����
2

:

ð20Þ

The Z-scan transmittance [20] depends on the

terms F1,F2, and F3 which are due to both the non-

linear dispersion and absorption. If the beam

intensity is very low so that we only keep the term
proportional to s in Eq. (19),

F 0 ¼
zR
d

� � x2 þ 1

zRðx2 þ 1Þ=d þ xþ i

	

þ a0Leff

2

s
zRðx2 þ 1Þ=d þ xþ 3i



;

F 1 ¼
zR
d

� � x2 þ 1

zRðx2 þ 1Þ=d þ xþ 3i

	

þ 3

2
a0Leff � 1

� �
s

zRðx2 þ 1Þ=d þ xþ 5i



;

F 2 ¼
zR
d

� � x2 þ 1

2ðzRðx2 þ 1Þ=d þ xþ 5iÞ

	

þ 5

4
a0Leff � 1

� �
s

zRðx2 þ 1Þ=d þ xþ 7i



;

In the far field zR � d and z0 � d, so the on-axis
transmittance simplifies to

�a L
T ðzÞ ¼ e 0 T kðzÞ þ T sðzÞ þ T cðzÞ½ �; ð21Þ
with

T kðzÞ ¼ 1þ 4D/0x
ðx2 þ 1Þðx2 þ 9Þ

þ 4D/2
0ð3x2 � 5Þ

ðx2 þ 1Þ2ðx2 þ 9Þðx2 þ 25Þ
; ð22Þ

T sðzÞ ¼ � 8D/0sx

ðx2 þ 1Þ2ðx2 þ 25Þ

� 2D/2
0s

ðx2 þ 15Þ
ðx2 þ 1Þ2ðx2 þ 9Þðx2 þ 25Þ

"

� x2 þ 7

ðx2 þ 1Þ3ðx2 þ 49Þ

#
; ð23Þ

T cðzÞ ¼
Dw0ðx2 þ 3Þ

ðx2 þ 1Þðx2 þ 9Þ þ
12D/0Dw0x

ðx2 þ 1Þ2ðx2 þ 25Þ

þ 5D/2
0Dw0

2

ðx2 þ 15Þ
ðx2 þ 1Þ2ðx2 þ 9Þðx2 þ 25Þ

"

� ðx2 þ 7Þ
ðx2 þ 1Þ3ðx2 þ 49Þ

#
ð24Þ

where Dw0 = a0Leffs, Tk(z) is the Z-scan transmit-

tance for Kerr media [2,13], Ts(z) is the correction

due to the saturable nonlinearity [13], and Tc(z) in-

cludes the coupled effect of nonlinear absorption

and saturable nonlinearity.

3. Discussion

We will compare the above analytical results

with numerical calculations for the specific case

of a cloud of two-level atoms. We assume a sca-

lar electric field e = [E(r, z)/2]ei(kz�xt) + [E*(r, z)/

2]e�i(kz�xt), the paraxial wave equation describ-
ing the propagation of the field amplitude in

two-level atoms is [24]

oE
oz

� i

2k
r2

?E ¼ i
3k2

4pn0
naW 0

2D=c� i

1þ 4D2=c2 þ I=I s
E;

ð25Þ
fromwhich the nonlinear susceptibility is derived as

v ¼ 3k3naW 0

2

2D=c� i
2 2

: ð26Þ

4p 1þ 4D =c þ I=I s
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Here na is the number density of atoms, W0 is

the population difference in thermal equilibrium,

generally W0 = �1, k is the wavelength of the laser

beam in vacuum, k = n0k0 = n02p/k is the wave

number in the medium, c is the decay rate of the
excited state, D is the laser beam detuning with re-

spect to the transition frequency, Is is the on reso-

nance saturation intensity of atoms and I is the

actual field intensity. The nonlinear susceptibility

v in Eq. (26) shows saturation behavior in both

refractive index (Re[v]) and absorption coefficient

(Im[v]). Defining the saturation intensity with arbi-

trary detuning IsD = Is(1 + 4D2/c2), for I < IsD and
small absorption, we get the same relation for non-

linear refractive index and absorption coefficient as

Eqs. (1) and (2), where the linear refractive index,

nonlinear coefficient of refractive index and

absorption coefficient are

n0 ¼1þ 3k3naW 0

4p2

D=c

1þ 4D2=c2
’ 1; ð27Þ

n2 ¼� 3k3

4p2n0

naW 0

I sD

D=c

1þ 4D2=c2
; ð28Þ

a0 ¼
3k3na
2p

1

1þ 4D2=c2
: ð29Þ

From Eq. (28), the nonlinear response of two-

level atoms to a near-resonance optical field can

be self-defocusing or self-focusing for different la-
ser detunings. If the laser frequency is tuned to

the red side of the resonance, i.e., D < 0, then

n2 < 0, the laser beam is self-defocused by atoms.

On the contrary, the beam is self-focused by atoms

if its frequency is blue-detuned, i.e., D > 0. In the

following, we numerically solve the wave equation

(25) on a 128 · 128 point transverse grid using a

split-step method to get the on-axis transmittance,
and then compare the results with analytical ones

calculated from Eq. (20) for both self-defocusing

and self-focusing.
0.74

0.72N
or

m
al

i

-4 -2 0 2 4

z / z R

 Numerical
 T (p max =0)
 T (p max =1)
 T (p max =2)

ig. 2. Analytical transmittance retaining the 1st, 2nd and 3rd

erms in Fm (pmax = 0, 1, 2) compared with the numerical

alculation for self-defocusing.
3.1. Low beam intensity s � 1

For a thin sample when beam the intensity is

very low such that s� 1, only terms with
m = n = p = 0 in Eq. (20) are important and the

transmittance can be obtained from Eq. (22),

which is exactly the on-axis transmittance for
nonsaturable Kerr media without nonlinear

absorption [2,13].

3.2. Moderate beam intensity close to the resonance

s < 1

We have chosen uniformly distributed cesium

atoms as the nonlinear medium with the following

parameters: length of the medium L = 0.6 mm,

atomic density na = 8.0 · 1010 cm�3, laser beam

wavelength k = 852.1 nm, Gaussian waist of the

beamw0 = 30.0lm.The frequency of the laser beam

is detuned from the center of the F = 4 ! F 0 = 5
transition of the D2 line byD = ±4c, and the satura-
tion intensity is IsD = 71.5 mW/cm2. The beam peak

intensity is 28.3 mW/cm2 such that s = 0.4 and

D/0 = 0.4. The aperture is placed z0 = 2.5 cm away

from the beam waist. The transmittance from Eq.

(20) is shown in Figs. 2 and 3.

Both figures show that the analytical results

converge as more terms from the summation in
Fm are included into the calculation in Eq. (20).

Compared with the numerical results shown by

the solid line in figures, when only one term is used

in each Fm so that pmax = 0, the analytical results

have a similar shape but are overall lower. When

more than one term (pmax P 1) is used in each

Fm, the analytical results converge quickly and

agree with the numerical results.
In Eq. (20), we took only the first three terms in

the summation over m and dropped those propor-
F

t

c
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tional to (D/0)
3 and higher. We can estimate the er-

ror introduced by dropping the 4th term in Eq. (18),

r6 jD/0ðzÞj
3
X3
n¼0

X1
p¼0

ð�1Þnð7
2
Þp

ð3� nÞ!n!p!

�����
� ða0LeffÞpspþn

ð1þ z2=z2RÞ
pþn

1

g þ id=d3np

����
6 4jD/0ðzÞj

3
X1
p¼0

ð7
2
Þp

6p!
ða0LeffsÞp

ð1þ z2=z2RÞ
p

1

g þ id=d3np

�����
�����

¼ 2

3

jD/0ðzÞj
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ d2=d2
300

q 1� a0Leffs
ðz2=z2R þ 1Þ

� ��7
2

ð30Þ

As the sample is moved away from the beam

waist, r drops rapidly. At z = 0, d = z0 and g = 1,

using the parameters above we have

r � 1.1 · 10�3, and jr/F0j � 10�2. So the relative

error in transmittance introduced by dropping

the 4th term is 1%. From Figs. 2 and 3, the maxi-

mum relative error between the numerical calcula-

tion and Eq. (20) is about 1%. Thus, Eq. (30) gives
a reasonable estimation of the error.

3.3. Nonlinear absorption and saturable nonlinearity

As we mentioned above, Eq. (20) includes the

coupled nonlinear absorption and saturable non-

linearity. We check the effect of nonlinear absorp-

tion by setting the laser beam peak intensity to be
14.1 mW/cm2 and changing its frequency detuning

from D = + 2c to D = + 10c so as to change s and

D/0. The other parameters are the same as in sub-
section 3.2. The Z-scan transmittance is shown in

Fig. 4. When the laser frequency is tuned close to

the resonance, near the beam waist the absorption

is strongly saturated and the transmittance is in-

creased. So the nonlinear absorption greatly en-
hances the transmittance peak and suppresses its

valley. When the laser frequency is far away from

the resonance, the nonlinear aborption is weak

and the Z-scan transmittance curve returns to the

normal dispersive shape.

When comparing the analytical calculations

with the numerical results in Fig. 4, we see that

the agreement is not perfect as s increases. We
now calculate the Z-scan transmittance for different

beam intensities with frequency detuning of

D = + 4c, the other parameters are the same as sub-

section 3.2. As shown in Fig. 5 the difference be-

tween the analytical and the numerical results

increases as s increases. The disagreement between

analytics and numerics is at the level of a few per-

cent when s 6 1. For example, at s = 1, the analyt-
ical transmittance is higher than the numerical

value by only 5.5% at z/zR = 0.23 and the peak to

valley difference DTpv, which is a measurement of

nonlinear refractive index, is 7% smaller than that

from the numerical results. For all calculations

from Eq. (20) in Fig. 5, we have chosen pmax = 2.

In order to compare closely with the numerics,

we included more terms from Eq. (15) to calculate
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the on-axis transmittance T, and the results were

the same. So the difference between the analytical

calculations and the numerics is not due to the
inadequate number of terms in the summation

but due to the approximation we have made in

Eqs. (4) and (5). In both equations, we replace

the saturation effect 1/(1 + I/IsD) by (1 � I/IsD).

For small s = I/IsD, it is a good approximation,

when s increases, the nonlinear response shows

strong saturation effects, and we would need to in-

clude more terms in the expansion Equation (3).
When s increases further such that s > 1, approxi-

mations (4) and (5) are not valid any more, and the

analytical results show a big difference with the

numerical ones. Other approaches are needed to

calculate the transmittance in this regime.

To further check the saturation effect, we fix the

beam intensity to be 50.0 mW/cm2 so that s = 0.7

and D/0 = 0.6, keep other parameters the same
as in Fig. 5, and compare different analytical calcu-

lations with the numerical result in Fig. 6. The

analytical calculations include the transmittance

for simple Kerr media [2], saturable Kerr media

without nonlinear absorption [13], nonsaturable

Kerr media with nonlinear absorption [2,7], and

the transmittance from Eq. (20) which includes

both saturable nonlinearity and absorption. It is
clear from the figure that our result using Eq.

(20) agrees best with the numerical calculations.

It shows that the transmittance peak has been en-
hanced and valley has been suppressed because of

the nonlinear absorption and DTpv is 16% smaller

than that from nonsaturable Kerr media [2].

Among other analytical results, although Bian et

al. [13] showed smaller DTpv due to the saturation,
the transmittance is a dispersive curve with peak

and valley the same distance away from the hori-

zontal level without nonlinear absorption [2,13].

When only the nonlinear absorption is included

[7], the calculation agrees better with the numerics

than those without nonlinear absorption, but it

shows larger DTpv than that from the numerics,

which is due to the absence of saturation of the
nonlinearity (Fig. 6).

3.4. Thick sample (L/zR � 1)

We also calculated the transmittance for differ-

ent sample thicknesses using Eq. (20) and compared

them with the numerical solutions in Fig. 7.

Although the Gaussian decomposition method is
valid only when the sample is thin enough to ignore

the diffraction inside the sample, the analytical re-

sults from Fig. 7 agree very well with the numerics

even when L is close to zR. At L = zR, DTpv from the

analytics is only 2% higher than that from the

numerics. When the sample is thicker than the Ray-

leigh range of the beam, the analytical result shows

that the peak and valley transmittance are still at
the same distance relative to focus and

DTpv = 0.078. On the other hand the numerics show

that this symmetry no longer holds due to the larger



0.60

0.55

0.50

0.45

-4 -2 0 2 4

z /z R

0.32

0.28

0.24

 N
or

m
al

iz
ed

 T
ra

ns
m

itt
an

ce

0.16

0.14

0.12

0.10

L/zR=1.0, ∆φ0=+1.2

L/zR=0.5, ∆φ0=+0.8

L/zR=1.5, ∆φ0=+1.4

Fig. 7. Analytical transmittance (symbols, pmax = 2) compared

with the numerical calculations (lines) for self-defocusing with

different sample lengths.

520 Y. Wang, M. Saffman / Optics Communications 241 (2004) 513–520
phase distortion D/0 > 1 and DTpv = 0.074. When

L > zR, the diffraction can no longer be ignored so

a ‘‘thin sample’’ approximation is inaccurate in pre-

dicting the exact shape of the transmittance curve.
4. Conclusion

We have derived an analytical expression for

the Z-scan transmittance of a nonlinear medium

with saturable absorption and dispersion. Com-

parison with numerical solutions shows that our

analytical result Eq. (20) is accurate up to satura-
tion values of order unity. Eq. (20) is also more

accurate than previously published expressions in

the presence of saturable absorption. Although

we started with the ‘‘thin sample’’ approximation

L/zR � 1 and low beam intensity s < 1, analytical

calculations agree reasonably with numerics even

when s � 1 and L/zR � 1.
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