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Abstract
We study propagation of a pair of oppositely charged and mutually
incoherent vortices in anisotropic nonlinear optical media. Mutual
interactions retard the delocalization of the vortex core observed for isolated
vortices.
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1. Introduction

Isotropic media with a repulsive nonlinearity support localized
vortex solitons characterized by a dislocation of the wavefront
at the point where the field amplitude vanishes [1]. Vortex
solitons have been observed in several types of defocusing
nonlinear media, including superfluids, superconductors,
optical Kerr media and Bose–Einstein condensates. Stability
of the solitons depends on the structure of the nonlinearity
and the dimensionality of the medium. Planar one-transverse
dimensional [(1 + 1)D] solutions are modulationally unstable
in bulk two-transverse dimensional [(2 + 1)D] media [2–4].
Kerr-type optical media with a cubic, isotropic and local
nonlinearity support stable (2 + 1)D vortex solitons [1, 5].
These vortex solitons have attracted considerable attention
theoretically [6] and have recently been studied in detail in
atomic condensates [7]. A Kerr-type nonlinearity is, however,
a simplified idealized model of a nonlinear response. The
bulk photorefractive nonlinear medium used in the experiments
reported here exhibits a nonlinearity that is both anisotropic and
nonlocal. This leads to qualitative differences in the spatial
dynamics of vortex beams.

One of the most basic phenomena is the propagation of
an isolated vortex of unit topological charge. Such a vortex
can form a stable soliton in isotropic defocusing media [5].
Theory and experiments have shown that unit charged vortices
become delocalized when they propagate in photorefractive

media [8–10]. The nonlinearity in a photorefractive crystal
with an externally applied electric field, or photogalvanic
response, is anisotropic and nonlocal [11]. The nonlinearity
induced by a localized, circular beam is roughly three times
stronger along the direction of the applied field than in the
perpendicular direction (we will refer to the direction of the
strongest nonlinearity as the ẑ axis). Due to the anisotropy
a vortex with an initially azimuthally symmetric core profile
focuses perpendicular to ẑ and stretches along ẑ, so that the
major axis of the core coincides with the direction of greatest
material nonlinearity. Simultaneously the elongated vortex
starts to rotate due to its phase structure. The direction of
rotation is uniquely determined by the vortex charge; changing
its sign changes the sign of the rotation. Eventually the rotation
is stopped by the anisotropy so that the major axis of the vortex
is aligned at some angle with respect to ẑ. The stretching,
however, proceeds without stopping so that the vortex becomes
more and more delocalized. Both theory and experiment show
that delocalization of the vortex core is generic in anisotropic
media, and not dependent on a specific choice of parameters.
The implication is that localized optical vortex solutions and,
in particular, vortex solitons of unit topological charge do not
exist in these media.

An additional hallmark of anisotropy is the nonlinear
decay of a charge n vortex into n unit charge vortices.
The decay, although expected on energetic grounds, does
not occur in isotropic media where a high charge vortex

1464-4266/04/050318+05$30.00 © 2004 IOP Publishing Ltd Printed in the UK S318

http://stacks.iop.org/JOptB/6/S318


Propagation of a mutually incoherent optical vortex pair in anisotropic nonlinear media

is metastable [12] but was observed using a photorefractive
crystal as the nonlinear medium [13]. Upon break-up of
the input high-charge vortex the resulting charge-one vortices
repel each other and form an array aligned perpendicular to ẑ.
The decay is driven by the intrinsic anisotropy of the medium
and takes place for any core profile of the input vortex field.
The theory developed in [13] suggests that the decay of high-
charge vortices is possible in local isotropic media provided
some anisotropy is introduced in the problem via, for example,
initial boundary conditions.

Given the instability of unit and high charge vortices in
anisotropic media it is natural to ask if there exist self-bound
field configurations that remain localized under propagation
in anisotropic media. Previous experiments [8] have
demonstrated that the effects of anisotropy are considerably
weakened for a counterrotating pair of vortices with zero net
topological charge. When such a pair is aligned perpendicular
to ẑ, it forms a bound state that translates parallel to ẑ in
a manner that is similar to the translational motion of a
counterrotating point vortex pair in fluid dynamics [14]. The
translational motion may, however, be inconvenient in the
context of optical processing applications. Furthermore, the
initial orientation of the pair is crucial for its subsequent
evolution. A pair aligned along ẑ annihilates due to diffraction.

In this paper we propose and demonstrate experimentally
a novel technique of creating bound vortex structures in
anisotropic media that are free of the above-mentioned
limitations. The main idea is based on the fact that in the
prevailing majority of nonlinear media the material response
is slow compared to the frequency of the optical field, and
therefore is a function of the time-averaged intensity of this
field. If the light field consists of several features separated
by frequencies that are fast on the timescale of the material
response, the material response will be a function of the sum
of these feature intensities, whereas the cross-terms oscillating
at high frequencies can be neglected. This fact has been known
in photorefractive nonlinear optics and used successfully for
implementing several optical processing devices [15], as well
as (1 + 1)D solitary structures [16].

We propose to create a bound vortex pair consisting of
two copropagating counterrotating vortices sitting on top of
each other that are mutually incoherent on the timescales
of the nonlinearity. This approach is closely related to the
vector solitons studied in [17]. Mutual incoherence can be
achieved either by separating the carrier frequencies of the
vortices by an amount that is larger than the inverse relaxation
time of the medium, or profiling time histories of the input
vortex fields such that their time overlap integrated over the
relaxation time of the medium is zero. The mutual incoherence
of the vortex fields removes the translational motion due to the
linear coherence of the vortex pair. At the same time each of
the vortices individually tries to rotate in opposite directions
which greatly reduces the anisotropy-induced stretching seen
in a single vortex. Nonetheless the evolution we observe
experimentally and through numerical solutions points to the
eventual decay of the structure. This is consistent with the
results of [17] which showed that the stability of vector solitons
was closely related to the spatial structure chosen for the two
components.

2. Theory

In the theoretical analysis we use the set of equations
describing propagation of an electromagnetic field B(�r ) in
a photorefractive self-focusing or self-defocusing medium as
developed in [11, 18]. In our case the field consists of two
temporal features. For definiteness assume that these features
are separated by a frequency shift � such that �τ � 1, where
τ is the characteristic response time of the nonlinearity:

B(�r , t) = [
B+(�r , t) + B−(�r , t) exp(−i�t)

]
exp(ikx − iωt).

(1)
In the steady state the equations governing spatial evolution of
the amplitudes B± take the form[
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∇2ϕ + ∇ϕ · ∇ ln(1 + |B+|2 + |B−|2)
= ∂

∂z
ln(1 + |B+|2 + |B−|2). (2c)

Here ∇ = ŷ(∂/∂y) + ẑ(∂/∂z) and ϕ is the dimensionless
electrostatic potential induced by the light with the boundary
conditions ∇ϕ(�r → ∞) → 0. The dimensionless coordinates
(x, y, z) are related to the physical coordinates (x ′, y ′, z′) by
the expressions x = αx ′ and (y, z) = √

kα(y ′, z′), where
α = (1/2)kn2reff Eext. Here k is the wavenumber of light in
the medium, n is the index of refraction, reff is the effective
element of the electrooptic tensor and Eext is the amplitude of
the external field directed along the z axis far from the beam.
The normalized intensity I = |B+|2+|B−|2 is measured in units
of saturation intensity Id , so that the physical beam intensity
is given by I × Id . The minus sign on the right-hand side
of equations (2a) and (2b) corresponds to a self-defocusing
nonlinearity.

Numerical solutions of equations (2) describing nonlinear
evolution of a single vortex (B− = 0) for different values of
the applied voltage (nonlinearity) are shown in figure 1. The
numbers on the frames are the values of this voltage in volts.
Superimposed on the images are the equal intensity contour
lines visualizing distortions of the vortex core for different
values of the nonlinearity. The size of the frames is about
200 µm.

The input field was taken to be

B+(x = 0, �r ) = √
Iinr exp(−r2/d2

G + iθ) (3)

where θ is the azimuthal angle, r = √
y2 + z2 and dG is

the diameter of the Gaussian beam. The parameters of the
calculation were the following: the wavelength λ = 0.63 µm,
the refractive index n = 2.3, the length of the nonlinear
medium l = 2 cm, the effective electrooptic coefficient
reff = 130 pm V−1, dG = 115 µm (135 µm full width at
half-maximum) and Iin = 1.

The output intensity distribution in the absence of the
nonlinearity is given by the frame labelled 0 V and corresponds
to an annular ring having approximately 79 and 267 µm
internal and external diameters, respectively. The frames
corresponding to nonzero nonlinearity demonstrate focusing
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0 V 350 V

150 V 700 V

Figure 1. Numerical results showing output spatial intensity
distributions of a single vortex for different applied voltages. In this
and all subsequent figures the z axis is horizontal and the y axis is
vertical.

of the vortex along ŷ and its stretching along ẑ. Also clearly
seen is the rotation and alignment of the vortex. This rotation is
charge-dependent and changes sign if the charge of the vortex
is changed from plus to minus one. The magnitude of all
these effects is directly proportional to the value of the applied
voltage.

Numerical solutions of equations (2) describing nonlinear
evolution of the mutually incoherent vortex pair for different
values of the applied voltage (nonlinearity) are shown in
figure 2. The input field was taken to be

B±(x = 0, �r ) = √
Iinr exp(−r2/d2

G ± iθ). (4)

All parameters were the same as in the case of a single vortex
(figure 1). The parameter Iin was again chosen such that the
total maximum input intensity was equal to 1 (the maximum
intensity of each of the constituents of the pair was 0.5).
Figure 2 demonstrates some considerable reduction in the
magnitude of anisotropy effects as compared to the case of a
single vortex (figure 1). In particular, the degree of ellipticity
of the vortex core at high voltages is several times smaller in
figure 2 than in figure 1. The horizontal intensity dip appearing
at high intensities on the Gaussian beam and passing from left
to right is several times smaller in figure 2 than in figure 1.
Figure 2 also confirms that the vortex pair remains stationary
and does not translate with respect to the Gaussian beam.

The above stability of the vortex pair is due to its phase
structure. To prove this point we have carried out numerical
calculations for the input field consisting of two temporal
features analogous to equations (4) and (1) but without
azimuthal phase dependence:

B±(x = 0, �r ) = √
Iinr exp(−r2/d2

G). (5)

The field (5) has an input intensity distribution that is identical
to the above discussed cases but lacks the topological phase
structure present in the case of equations (3) and (4). Figure 3

0 V 350 V

150 V 700 V

Figure 2. Numerical results showing output spatial intensity
distributions of a vortex pair for different applied voltages.

0 V 350 V

150 V 700 V

Figure 3. Numerical results showing output spatial intensity
distributions of a hole in the intensity without phase structure.

shows results of the calculations. All parameters are the same
as in figures 1 and 2. In sharp contrast to figures 1 and 2 the
output distribution of the field does not contain any intensity
zeros because of the diffraction. The output intensity for zero
applied voltage is a bright ring with a smaller local maximum
in the centre that is about two times weaker than the ring.
Increasing nonlinearity results in the transfer of energy from
the ring to the centre of the beam and the appearance of two
intensity minima on the right and left. The intensity in these
minima at the highest value of the applied voltage (700 V) is
about 0.2 of the maximum intensity in the centre.

3. Experiment

The experimental set-up is shown in figure 4. A 30 mW
He–Ne laser beam (λ = 0.63 µm) was passed through a
variable beamsplitter and a system of lenses controlling the
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Figure 4. Experimental set-up.

0 V 350 V

150 V 700 V

Figure 5. Observed evolution of two spatially coinciding
counterrotating vortices for applied voltages of 0, 150, 350 and
700 V.

size of the beam waist. Diffraction of the beam by a diffractive
element with a fringe dislocation created unit charge vortices
of opposite signs in the first-order diffracted beams to either
side of the transmitted beam. One of the beams was phase
modulated by reflection from a mirror mounted on a piezo-
electric transducer driven by a sawtooth voltage, such that
�τ � 1. The beams were then recombined and directed
into a photorefractive crystal of SBN:60 doped with 0.002%
by weight of Ce. The beams propagated perpendicular to the
crystal ĉ-axis (=z axis) and were polarized along it. The
crystal measured 19 mm along the direction of propagation
and was 5 mm wide along the ĉ axis. The experimentally
measured value of the relevant component of the electrooptic
tensor was found to be equal to r33 = 130 pm V−1. A variable
dc voltage was applied along the ĉ axis to control the value
of the nonlinearity coefficient. The crystal was illuminated
by a source of incoherent white light to increase the level of
the effective saturation intensity. Images of the beams at the
output face of the crystal were recorded with a CCD camera.

Figure 5 presents experimental output intensity distribu-
tions of the light beam with two embedded overlapping mu-
tually incoherent vortices for different values of the applied
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Figure 6. Ellipticity of the vortex core for incoherent pair
experiment (filled squares), incoherent pair numerics (open squares)
and single vortex numerics (open diamonds).

voltage. The numbers on the frames give the applied voltage
in volts. The size of the frames is about 200 µm. The out-
put intensity distribution in the frame with no applied voltage
corresponds to an annular ring with internal and external di-
ameters of about 80 and 260 µm, respectively. Increasing the
voltage results in the focusing of the vortex core and its stretch-
ing along the direction of the anisotropy which is clearly seen
on the last frame, corresponding to the 700 V applied voltage.
This stretching, however, is much smaller than that for a single
vortex for similar parameters. Experimental data on the distor-
tions of a single vortex are given in [8]. Comparison with the
results of the theoretical description shows good quantitative
agreement between the experiment and theory regarding the
degree of ellipticity of the vortex core. Positions of intensity
lobes (maxima) on the Gaussian beam above and below the
vortex core in the theoretical figure 3 also are in agreement
with those on the experimental figure 5.

The evolution of the ellipticity of the incoherent structure
is shown in figure 6 where we have plotted the ratio of the
major and minor axes of the vortex core (measured at the
innermost contour lines given in the figures) as a function of
the applied voltage. We see that the numerical predictions and
the experimental observations of the growth of ellipticity of
the incoherent pair agree to about 10%. On the other hand, the
decay of an isolated vortex proceeds many times faster.

4. Conclusions

In summary we presented an experimental and theoretical
study of the propagation of a mutually incoherent pair of
vortices. Incoherent coupling between the oppositely rotating
vortices creates a symmetric attractive potential that slows the
rapid spreading and decay of an isolated vortex.
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