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Abstract 

We describe observation and analysis of optical vortex patterns in a uni- 
directional ring oscillator with photorefractive nonlinearity. Including field 
rotation in the resonator leads to novel structures, including counter- 
rotating rings of optical vortices with opposite helicity. A modal analysis is 
used to explain the observed patterns. 

1. Introduction 

Several different mechanisms lead to pattern formation in 
nonlinear optics. A very general mechanism is the transverse 
modulational instability of counterpropagating beams 
[1-3]. The instability occurs in media where the com- 
bination of nonlinear phase modulation and linear 
(diffractive) angle dependent phase retardation leads to 
instability and oscillation of spatial sidebands. The nonlin- 
ear stage of this instability leads to regular transverse pat- 
terns, often with hexagonal symmetry [3, 41. The instability 
has been observed in a variety of materials, including atomic 
vapors [4], liquid crystals [SI, photorefractives [6] and 
organic films [7]. 

An alternative route to optical pattern formation is to 
place a nonlinear medium with gain in an optical cavity that 
supports a spectrum of linear transverse modes. A super- 
position of the cavity modes is excited and the resulting 
pattern may be static or dynamic depending on whether or 
not the modes are frequency degenerate [8-101. Such a 
device, a nonlinear gain medium placed in a resonant cavity, 
is nothing more than a laser. It is therefore no surprise that 
the resulting patterns are connected closely with the well 
known HermiteGaussian or LaguerreGaussian transverse 
modes of any laser oscillator. Patterns like those described 
in this report could in principle have been observed in the 
early days of the laser. Nonetheless, by using optical cavities 
that are not restricted to oscillation in the lowest, or few 
lowest, transverse modes, striking and new features emerge. 

Patterns observed in lasers supporting many transverse 
modes are characterized by the appearance of wave front 
dislocations, or optical vortices. These are points where the 
intensity goes to zero, while the phase advance on a closed 
loop about the zero is 2am, where m is the charge of the 
vortex. Optical vortices are well known in linear optics [ 111 
and are also seen as the TEM,,, or “doughnut” mode of 
lasers. Solutions of the Maxwell-Bloch equations have 
demonstrated, in a general context, the existence of dis- 
locations in nonlinear optical media with gain [l2]. Dis- 
locations have been observed in a number of experiments 
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with lasers and photorefractive osciIlators [13-161. In par- 
ticular, the superposition of several frequency shifted modes 
has led to the observation of moving regular vortex patterns 
[17, 181. 

There are some basic differences between pattern forma- 
tion due to transverse modulational instability and patterns 
observed in resonant cavities. In the modulational insta- 
bility case a nonlinear phase shift is necessary for oscillation, 
whereas in the cavity case it is sufficient to have a medium 
with nonlinear gain. A nonlinear phase shift may, neverthe- 
less, occur in the cavity case due to frequency shifts between 
the pump and oscillating fields. These two systems are also 
distinct as regards the types of patterns they produce. Pat- 
terns due to modulational instability may be classified as 
“mixed” modes whereas patterns observed in resonant cavi- 
ties are close to “pure” modes. This terminology may be 
understood as follows. The paraxial wave equation admits 
Hermite-Gaussian and LaguerrGaussian functions as 
solutions. It is well known that any Hermite-Gaussian [19] 
or Laguerre-Gaussian function of a given order is self- 
similar upon Fourier transformation. More precisely 
9({H, (x )  e-‘’} - i”H,(R) e-”, where 9 is the Fourier 
transform operator, H,, is the nch Hermite polynomial, and 
tildes denote conjugate variables. Similarly, the Hankel 
transform of the Laguerre polynomial mode L;(r2) e-’’ - 
imL;(P) e-@. This implies that the intensity pattern due to 
a single Hermite-Gaussian or Laguerre-Gaussian mode is 
self-similar in the near and far fields, or at any plane in 
between. This also applies to superpositions of the form 
E,, H,,e - x z .  Likewise, patterns due to mode superpositions 
with widely spaced values of the mode index will be approx- 
imately self-similar in intensity. We refer to such patterns as 
“pure” modes since they are form invariant under linear 
propagation. Transverse modulational instability results in 
“mixed” modes that are not form invariant under propaga- 
tion. 

Oscillators pumped by nonlinear beam coupling in a pho- 
torefractive crystal are an attractive system for studying 
these patterns. The large nonlinearity and narrow gain line 
of photorefractive two-beam coupling leads to strong fre- 
quency pulling such that transverse modes with relative fre- 
quency shifts of tens of Hz are observed, even though the 
empty cavity modes have natural frequency differences in 
the MHz range. The resulting slowly moving patterns can 
be recorded directly with video cameras. A number of recent 
works have studied pattern dynamics in photorefractive ring 
oscillators [14-181. We describe in section 2 new forms of 
these patterns obtained in a ring oscillator with field rota- 
tion in the cavity. The study of patterns generated in cavities 
with field rotation was pioneered by Vorontsov, and a huge 
variety of patterns have been observed [20]. The difference 

Physica Scripta T67 



22 

here is that we are dealing with a coherent oscillator that is size of the gain medium is fixed by the pump beam we have 
sensitive to the phase of the optical field whereas the field for the Fresnel number of the resonator with gain medium 
rotation systems studied by Vorontsov were based on inco- 9 = 4wp wlen$(AL), where wlem is the radius of the clear 
herent cavities. The possibility of self-consistent modes in aperture of lens f: This expression applies when the gain 
such a cavity can be understood from the fact that the gen- medium is located symmetrically opposite the lens, so that 
erated modes rotate as they propagate. The geometric rota- the beam waist is located inside the gain medium. For our 
tion in the cavity is thus compensated for by diffractive resonator parameters we find 9 - 50. At such high values 
rotation. A modal analysis is given in section 3 where it is of the Fresnel number we observe a generated beam in the 
shown that the observed patterns are discrete superpositions form of a spatiotemporally chaotic speckle field [14]. 
of Laguerre-Gaussian modes. Section 4 contains some con- The Fresnel number can be reduced by moving the gain 
cluding remarks. medium away from the plane where the beam waist lies. 

Referring to Fig. 1 if the counterclockwise distance from 
lens to crystal is L, and the distance from crystal to lens 
is L,, (L, + L, = L) we have approximately 9 = 2. Experiment 

The experimental geometry is shown in Fig. 1. The ring res- (4w, wlen$(AL))(l - 2L,/L). For the experimental results 
onator was formed from three planar mirrors, a lens of focal reported below L, was adjusted to give 9 - 5-15. Under 
lengthf= 150- a dove prism that can be rotated about these conditions we observed regular transverse patterns. 
its axis, and a photorefractive gain medium. The effective These patterns were observed both with L < 4f(stable, near 
cavity length, accounting for the index of refraction of the concentric resonator) and L > 4f (unstable, near concentric 
prism and the gain medium, was adjusted to L = 600" resonator). Geometric stability is not important here, 
within an accuracy of 1-2". The cavity was thus approx- because the Gaussian profile of the pump beam assures the 
imately concentric. Gain was provided by a 5.2 mm long existence of stable modes for all cavity lengths. 
crystal of KNbO, doped with 0.5% by weight Fe pumped Figures 2 to 4 show examples of the observed patterns 
by a 22mW beam from a 532nm frequency doubled recorded with a video camera. Each row shows the far-field 
Nd:YAG. The pump beam was focused to a Gaussian (left) and near-field (right) images. The patterns were 
radius of wp = 0.43 mm in the crystal. Scattered light seeds observed for the same resonator parameters, but slightly dif- 
unidirectional oscillation in the ring. The orientation of the ferent resonator lengths, obtained by adjusting piezoelectric 
KNbO, crystal is chosen such that the oscillating field mirror MI or tilting the gain crystal slightly. Patterns a-c in 
counterpropagates to the pump beam, and couples to it via Fig. 2 are modes with a bright center and a ring of 3,4 and 
formation of a reflection grating oriented along the crystal 5 field dislocations respectively. Patterns d and e are more 
c-axis. The cavity mirrors M ,  -, had reflectivities of 100, 95 
and 50%. The outputs transmitted through the partially 
reflecting mirrors were projected on a screen using relay 
lenses to give simultaneous near-and far-field pictures. The 
near field picture is a magnified image of the field at the 
right hand surface of the gain medium in Figure 1. The far- 
field image is its Fourier transform, obtained by propagat- 
ing for 3m in free space. Fine adjustment to the length of 
the cavity was made by mounting mirror M, on a 
piezoelectric translator. 

The structure of the generated field depends on the cavity 
Fresnel number which quantifies the number of available 
degrees of freedom. A concentric resonator is self-imaging 
(up to a minus sign) and the Fresnel number of the empty 
resonator is is not well defined. Recalling that the effective 
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Fig. 1. Experimental geometry. 
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Fig. 3. Patterns with a zero at the center. 

complex. Pattern d has an inner ring of 7 zeroes, a second 
ring of zeroes, and an outer bright ring. Pattern e has an 
inner ring of 7 zeroes and an outer ring of 17 zeroes. Figure 
3 shows patterns with a zero at the center and a ring of 0,4, 
5,6,7,  8,9 and 12 zeroes in frames a-h respectively. Frame f 
is very similar to frame e in Fig. 2 (except for different 
numbers of zeroes), and frames d and g have outer rings 

Fig. 4. Patterns with strong pentagonal symmetry. 

with close to 30 zeroes. Finally, Fig. 4 shows unusual pat- 
terns with strong pentagonal symmetry. The interpretation 
of the dark spots in these patterns as field dislocations was 
verified by interferometric observations. The helicity of the 
vortices on a given ring was the same. The relatively 
complex patterns with multiple concentric rings were 
observed only at relatively high values of the cavity Fresnel 
number (F - 15). 

All of these patterns were observed with the dove prism 
set to give a rotation angle of about 30". The exact setting of 
the dove prism was not important. Corresponding patterns 
were observed for a range of rotation angles. In all cases the 
patterns were observed to rotate at frequencies of up to 
several revolutions per second. The speed of rotation 
depended on fine tuning of the cavity length. This is due to 
the fact that the rotation of the patterns is due to small 
relative shifts between the pulled mode frequencies. The 
direction of rotation was not fixed, and spontaneous switch- 
ing between rotation directions was seen. Apart from a 
momentary condition during switching of the rotation direc- 
tion, the patterns were never observed to stand still. The 
inner and outer rings in the multiple ring patterns were 
observed to rotate simultaneously in opposite directions. 
The patterns could be selected by tuning the length of the 
resonator. This was in accord with the observations in [16] 
that the observed mode is determined by the resonance con- 
dition of the empty (linear) resonator. More complex spatio- 
temporal dynamics involving repetitive, periodic switching 
between a set of transverse modes was also observed. 

It is apparent from Figs. 2-4 that the observed patterns 
exhibit a large degree of self-similarity. As explained in the 
introduction, self-similarity implies that the patterns may be 
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represented accurately by superpositions of a few Laguerre- 
Gaussian modes. Only in Fig. 4 do we see patterns that are 
far from being self-similar. This may be due to the fact that 
these patterns, in particular, were recorded under conditions 

related recent experiment where patterns were observed in a 
linear photorefractive resonator driven by counter- 
propagating pump beams gave qualitatively different results 
[21]. In that case the observed patterns were not self-similar. 
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given approximately by eq. (3) while the outer circle has 
radius 

r2 % w % 

By way of example m1 = 8 and m2 = 20 gives, for equal 
modal coefficients e,,,,, r l /w x 1.37 and r2/w % 2.65. The 
angular positions of the dislocations on the outer ring are 
given by 

(5) ( 
Jc >""I mz I - I m i  I )) a 

where the resonator mode exhibited periodic switching. A Jz Coni 

(6) 

where n = 0, . . . m2 - ,,,, - 1. The helicity of the dis- 
locations is given by sign (ml) on the inner ring and sign 
(m2) on the outer ring. propagation from z = 0 to z = I 
res,&s in rotation of the inner and outer circles by 

(7) 

2n + 1 
m2 - m, 

4f) = n, 3. Modal Analysis 

The linear modes of the resonator can be found using the 
Well known formalism Of ray-matriCeS [22].  When the res- 
onator possesses axial symmetry it is most convenient to use 
Laguerre-Gauss modes as a Set Of basis fUnCtiOnS for rep- 
resenting the resonator field A = '&, c, A,. These func- 

following normalized form and 
tions form a complete set and may be written in the 84") = siP (ml) tan-' (llzd 

(8) A,(r, 4, z) = Jw (&ym1Lkm1 (x) 84 (2 )  - - 1 %  I - I m1 I tan- 1(qzR) 

m 2 ( z ) ( p  + I m I I! w"(4  m2 - m, 
x e- rz/wz(d e*rz/2~z(d ei(kz +Jlpll(z)) eiNs ( 1 )  

Here t is the radial coordinate, 4 is the azimuthal coordi- 
nate, LLmI is a generalized Laguerre polynomial, w(z), p(z) 
are the Gaussian width and radius of curvature respectively, 
and $,(z) is the diffractive phase shift due to propagation. 
The normalization has been chosen such that 

(A,, Apt,.) = ff̂  d4 c drrA, A&,, = dppt d,,,,,,,. 

respectively. When ml and m2 have the same sign both rings 
rotate by the same amount, and when m, and m, have 
opposite signs the rotation in the outer ring is smaller. 

Consider now the question of self-consistent modes in the 
resonator with field rotation. Denoting the rotation angle 
introduced by the dove prism by c $ ~  we require I $ ~  
+ 64") = 1,(2n/m,) on the inner circle and c$p + d$(,) = 

12(2n/(m2 - m,)) on the outer circle, where I,, I 2  are the 
number of pattern periods rotated in each round trip. Using 
eqs. (7, 8) it is possible to find integers m, and m2 which 
satisfy these two conditionS. 

tive propagation there may also be a contribution due to 

(2) 

It is convenient to define the reference plane where the 

shift is given by [22] $,('I = (2p -k I WJ I + ' 1  tan-' 
beam waist Occurs (P = co) as z = O, in which caSe the phase It should be noted that besides the rotation due to diffrac- 

(B/(Azd), where A, B are the raY-matrix elements for Pro- 
Pagation from the reference Plane, and the RaY1eigh length 
is zR = nw2(o)/n* The dependence Of the phase shift On the 

the formation of a twisted holographic grating inside the 
nonlinear medium. Particularly if the cavity length is adjust- 
ed to & perfectly concentric there will be no diffractive con- 

mode index has an important consequence; patterns that tribution to the pattern rotation. 
are superpositions Of modes with different values Of 

2p + I m I rotate as they propagate* To i11ustrate this con- 
Figure 5 gives an example of a representation of a pattern 

with a central dislocation, plus two rings of vortices, uskg 
sider the field with m1 wave front dislocations given by A = 
coo A,, + cOm1 AOml. On the circle with radius 

r ,  = W (% ~ m )  
there are m, dislocations at angles 

the modal superposition A = Ao, , + Ao, 9 + Ao, - 2 0 .  The 
calculated pattern is similar in a qualitative sense to the 
observed structure, although details of the relative sizes of 
the dark and bright regions are not accurately reproduced. 
There are several reasons for expecting less than perfect 
agreement. For the first we have assumed a modal super- 
position with equal weighting coefficients. In reality the 

( l / l m i  I) 
(3)  Jz comi 

+:U = - (4) 
2n + 1 

1111 
n, 

where n = 0, . . . m, - 1. Free space propagation through a 
distance I gives $,l = (2p  + I m, I + 1) tan-'(I/zd. The field 
dislocations thus rotate clockwise looking along the direc- 
tion of propagation by an angle 64 = sign (m,) tan-l(I/zA. 
This rotation was ver5ed experimentally for m, = 2 in [23].  

Some of the observed patterns are characterized by con- 
centric rings of dislocations. To describe this situation we 
write the field in the form A = A,, + AOml + Aomz, with 
m2 > m,. The resulting mode has an inner circle containing 
I mi 1 zeroes and an outer circle of I m2 - m, I zeroes- For mi 
and m2 sufficiently different the radius of the inner circle is 
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Fig. 5. Comparison of experimental observation (a) and modal super- 
position@). 
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modes participate with unequal weights, since their fre- 
quencies are slightly different (this is what gives rise to the 
temporal rotation), and the modes thus receive slightly dif- 
ferent amplifkation. The modal functions in eq. (1) all have 
the same characteristic spatial scale w. This follows from 
linear resonator theory. In reality nonuniform saturation in 
the wings of the Gaussian pump beam is expected to give 
the different modes different effective diametersw + w,, . 

4. Conclusions 

In summary we have observed patterns characterized by 
concentric rings of optical vortices in a ring resonator with 
field rotation. The patterns are closely related to linear res- 
onator modes. In particular there is a strong degree of self- 
similarity between the near-and far-field intensity 
distributions. The observed patterns were non-stationary. 
Both steady circling motion of the vortices, including 
counterrotation of concentric rings, and periodic switching 
between patterns, were observed. 
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