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Abstract

We report on spatial patterns in a linear photorefractive oscillator pumped by counterpropagating beams. Both spatially
periodic and irregular patterns are observed depending on the cavity to pump laser detuning and the relative intensity of the

two pump beams.

Several different mechanisms lead to pattern forma-
tion in nonlinear optics. A very general mechanism
is the transverse modulational instability of counter-
propagating beams [1-3]. The nonlinear stage of this
instability leads to regular transverse patterns, often
with hexagonal symmetry {3,4]. This type of insta-
bility occurs when two beams counterpropagate in a
passive nonlinear medium, without any feedback from
cavity mirrors. The instability has been observed in
a wide variety of materials, including atomic vapors
[4], liquid crystals [S], photorefractives [6] and or-
ganic films [7].

The situation in active nonlinear media that are
placed in an optical cavity, and pumped by an external
source of energy, is more complicated. A distinction
should be made between the case of an optical cavity
that supports a spectrum of stable linear modes, and
the opposite situation where the optical cavity is un-
stable, or only marginally stable. Pattern formation in
cavities with a finite spectrum of stable linear modes
may be understood in terms of the nonlinear excitation
of a superposition of these linear modes [8,9]. The
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resulting patterns may be static or dynamic depending
on whether or not the modes are frequency degener-
ate [10,11]. Patterns that are superpositions of linear
cavity modes have the property that they are similar to
their own Fourier transform. Thus, near and far-field
pictures look the same up to a scaling factor.

On the other hand a cavity formed by plane paral-
lel mirrors has only marginally stable modes. These
modes take the form of cylindrically symmetric rings
that correspond to Fabry-Perot resonances. The an-
gle between the rings and the optical axis depends on
the cavity tuning. We show below that in the pres-
ence of counterpropagating pump beams these rings
become unstable and collapse into tilted waves lying
on the rings, but propagating at an arbitrary azimuthal
angle. Excitation of tilted waves has been shown nu-
merically to lead to a rich variety of patterns in both
linear [12] and ring geometries [ 13]. We present the
first, to our knowledge, experimental observation of
this mechanism, using a linear geometry with a pho-
torefractive crystal as the active gain medium. There
are two instability thresholds in this system. The first
is the laser threshold at which oscillation commences
and takes the form of Fabry-Perot rings in the far field.
This is most easily observable with a single external
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Fig. 1. Experimental setup. The laser power is 65 mW focused
to a spot of Gaussian diameter 0.85 mm. The crystal length is
I=52mm, and ¢ = 9.7°.

pump beam. At the second threshold, which is passed
when a second pump beam is introduced, the rings be-
come unstable, and collapse to a finite number of tilted
waves. These patterns are not Fourier self-similar and
the near and far field intensity distributions are not re-
lated by a simple rescaling of coordinates. In this sense
these patterns are similar to those observed in cav-
ityless systems, and qualitatively different from those
observed in cavities containing focusing elements and
well-defined stable modes.

The experimental geometry is shown in Fig. 1. A
crystal of KNbO;3; doped with 0.5% by weight Fe is il-
luminated by counterpropagating beams. The forward
pump beam F is derived from a Nd:YAG laser at
532 nm. The counterpropagating pump B is formed
by reflection from a mirror of intensity reflectivity of
4% located about 15 mm from the crystal. A Fara-
day rotator is used to isolate the laser from beam B.
Scattered light seeds the oscillation of beams f and
b between the uncoated c-faces of the crystal, each
having a reflectivity of about 15%. In this geome-
try, with propagation almost parallel to the crystal c-
axis, reflection gratings form and couple beam pairs
{F,B},{E b},{f. B}, and { f, b}. In KNbO; the grat-
ings are shifted by #7/2 with respect to the optical in-
terference pattern, so that there is strong coupling of
energy from the beams propagating along —¢ to those
propagating along +¢.

When a mirror with high reflectivity is placed after
the crystal we observe the normal transverse modula-
tional instability of F and B leading to hexagonal pat-
terns [6]. When the mirror is removed so there is no

beam B excitation of the Fabry-Perot resonances of the
linear cavity is observed, as shown in Fig. 2. When the
crystal length is such that the on-axis mode is off reso-
nance we observe the patterns shown in Fig. 2a. Since
absorption of light in the crystal contributes to the ther-
mal loading, and hence to the index of refraction of the
crystal, it is possible to tune the resonance condition
to a certain degree by varying the laser power. When
the power is adjusted to bring the on-axis mode on res-
onance we observe the patterns shown in Fig. 2b. The
near field pictures in this, and subsequent figures, are
magnified images of the field at the z = 0 end of the
crystal. The near-field is characterized by dark struc-
tures (field dislocations and stripes) that drift across
the aperture. The drift motion is due to the crystal end
faces not being exactly parallel. Even though there is
only one external pump beam, the second pump beam
B is present to the extent that it is generated by the
four-wave mixing geometry [14]. For the conditions
of Fig. 2. we observe a beam, much weaker than the
oscillating beams, counterpropagating to F.

When the 4% reflectivity mirror is inserted the pat-
terns change dramatically as shown in Fig. 3. The
Fabry-Perot rings that are observed with a single pump
beam become unstable and collapse to two or more
tilted waves in the far-field, leading to regular roll,
tiled, and rhombic patterns in the near field. Simulta-
neous excitation of multiple tilted waves gives rise to
coexisting near-field patterns of different symmetries.
In some cases waves corresponding to several differ-
ent Fabry-Perot rings are excited simultaneously. The
orientation of the roll patterns shown in Fig. 3a was
arbitrary for well aligned pump beams. Adjusting the
feedback mirror to give a small misalignment between
F and B resulted in rolls with fringes parallel to the
transverse vector 6k = kr + kg. Note that the far-
field patterns all have inversion symmetry. This is a
consequence of the bidirectional pumping geometry.
The patterns change qualitatively with a characteristic
time of about one minute. We believe these slow drifts
are due to thermal changes in the effective length, and
hence the resonance condition of the crystal.

A qualitative change in the near-field patterns is ob-
served when the laser power is adjusted so that the on-
axis mode is in resonance. Examples of these patterns
are shown in Fig. 4. In this case a variety of irregular
structures are seen. These include finger-like contours,
zig-zag boundaries, rolls, and coexisting combinations
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near-field

of these structures. Patterns with a large degree of spa-
tial complexity are observable since the cavity Fresnel
number given by F = wgump /{Al) is about 160, which
is much greater than unity. The patterns are dynamic
and evolve continually with a characteristic time scale
of seconds. This time scale is much longer than the
characteristic photorefractive time constant which, for
the given pump beam intensity, is of the order of 0.05
s, yet much shorter than the time scale associated with
thermal drifts.

When the cavity is in resonance with the pump radi-
ation the generated beams have strong components ly-
ing along the cavity axis. In general these beams have
a finite angular divergence, and they contain compo-
nents that are frequency shifted with respect to the
pumps, so that they experience both energy and phase
coupling. This leads to the nonstationary, irregular pat-
terns shown in Fig. 4. When the cavity is not in reso-

far-field

Fig. 2. Characteristic near and far field oscillation patterns with a single pump beam.

nance with the pump radiation tilted waves satisfying
6. + (k% /2k)! = 0, where @, is the cavity detuning
and k| is the transverse wavevector, will be resonant
with the pump. In this case there is a well defined
spatial scale given by A ~ /1/(2k8,) [13], and we
observe mostly periodic patterns as shown in Fig. 3.
As described above three different modes of oper-
ation, namely Fabry-Perot rings (Fig. 2), transverse
modulational instability of the pumps, and tilted wave
patterns (Figs. 3, 4), are all possible depending on
the relative intensity of the pump beams. The cou-
pling coefficient for reflection gratings in the heavily
doped KNbOs used here was |yl| ~ 6, so the strong
longitudinal coupling must be accounted for. We will
calculate the oscillation threshold condition using the
reflection grating equations of motion [ 14,15]:

OF i_,
7~ g Ve F=GB+gb. (1)
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far-field
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Fig. 3. Periodic patterns: (a) rolls, (b) mixed symmetry, (c) tiles,

(d) coexisting rolls and rhomboids, (e) wavy stripes, and (f)
crossed rolls. Left column near-field, right column far-field.
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Coupling due to transmission gratings has been ig-
nored, since both the effective electro-optic coefficient
for this type of grating, and the angle between the co-
propagating beams, are small. Here v is the photore-
fractive coupling constant, I = |F|>+|B|2 4| f|?>+|b|?
is the intensity, and 7 is the material relaxation time.
The pump beams propagate along coordinate z’ and
coordinate r’ lies in the plane perpendicular to z’. The
grating G that is responsible for direct interaction of
the counterpropagating pumps is typically neglected
in standard treatments of reflection grating four-wave
mixing [14,15]. In the present case the pump beams
F and B are mutually coherent, and have the same
polarization, so this grating cannot be ignored. An ad-
ditional grating proportional to the product fb* has
been neglected since the generated beams f and b will
be assumed small in the following threshold analysis.
Reflection gratings in KNbO; are due almost exclu-
sively to a diffusive charge transport mechanism so
that the index grating is shifted by 77 /2 with respect to
the optical interference pattern. The coupling constant
v is thus purely imaginary.

When the feedback mirror has unity reflectivity
F(l) = B(l), and the threshold for transverse mod-
ulational instability of beams F and B is |yl| >~ 6
[16]. Since the oscillation threshold for beams f and
b is much lower than this at small B it can be found
by describing F and B as plane waves and linearizing
in the amplitudes f,b. We assume the cavity to be
in resonance with the pump radiation. If this were
not the case the oscillation would be off-axis, but this
does not change the results of the threshold analysis.
The resulting steady state plane wave equations then
take the form

=" —F (7)
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where y = iy, f = f/E b = b/B, q(z) =
|B(z)|?/|F(z)|* and we have replaced z’ by z in
the first two equations above since cos(8) = 1.

For no feedback mirror we have unidirectional
pumping with B = 0 and ¢ = 0. Hence f propagates
as in free space, and b and f only couple weakly due
to pump depletion. It is thus not surprising that for
modest nonlinearity, where the depletion of F by f
as given by Eq. (1) is small, unidirectional pumping
leads to excitation of the normal Fabry-Perot reso-
nances as seen in the far-field views shown in Fig. 2.

far-field

Fig. 4. Complex patterns: (a) finger pattern, (b) coexisting uniform, zig-zag and roll regions. Left column near-field, right column far-field.

Eqgs. (7)-(10) yield immediately the threshold con-
dition "l = —InR, ~ 1.9 where R, = 0.15 is the
reflectivity of the crystal faces.

For a perfectly reflecting feedback mirror (F (/) =
B(l)) we have g(z) = 1 and the oscillation threshold
is infinite since the amplification of b by pump F is
counterbalanced by the depletion of f due to pump B.
For general values of F and B ¢ = ¢(z) and Egs. (9),
(10) have space dependent coefficients. To proceed
we approximate the factors ¢/(1+ ¢) and 1/(1 + q)
in Egs. (9), (10) by their longitudinal averages ¢, =
(1/1) fy dz ¢/ (1 +q) and g2 = (1/1) f3 dz 1/(1 +
q). The oscillation condition is then determined by
the expression

tanh(/g1g2y"1)

1/2 "y
1 — R.tpe?
=< g ) = (11
R trq 1 —m(q2/q) e
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Fig. 5. Oscillation threshold as a function of feedback mirror
reflectivity for R, = 0.1,0.15, and 0.5.

Here m = B([)?/F(0)2 = Rtp, tr = (1 +m) /(1 +
me2?'y [17], and R is the feedback mirror reflectiv-
ity. The dependence of the threshold coupling on R is
shown in Fig. 5. For small R linear oscillation is pre-
ferred, while for large R modulational instability of
the pumps has a lower threshold. As R, is reduced os-
cillation is restricted to smaller values of R. This cal-
culation gives the threshold for oscillation of beams f
and b in ring modes. Calculation of the second thresh-
old, at which the rings collapse to tilted waves, will
be considered in future work. It is noteworthy that the
change in the oscillation structure, that is observed in
the presence of beam B, is accompanied by a reduc-
tion in the oscillating power, since B depletes beam f.
In summary we have observed periodic and irreg-
ular patterns in a linear photorefractive oscillator. Pe-
riodic patterns arise from a tilted wave mechanism.
The observed patterns depend strongly on the relative
intensities of the counterpropagating pump beams.
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