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We analyze the stability of two recently demonstrated photorefractive resonator circuits. The analysis is
based on single-mode models of the multimode circuits. The flip-flop, which consists of two competitively
coupled rings, is considered in the two limits where the rings share or have separate gain volumes. Both
configurations are found to be stable for typical experimental conditions. The feature extractor consists of
two rings with a shared gain volume. It is found to be unconditionally stable. The results are discussed in
the context of the experimental demonstrations.
1. INTRODUCTION

The photorefractive ring oscillator was first demonstrated
in 1982.1 In its most basic configuration, with a single
gain medium, the photorefractive ring resonator has been
used for real-time beam cleanup2 and has been proposed
as a bistable device.3 Including additional nonlinear ele-
ments or multiple photorefractive interactions in a single
ring, or allowing multiple rings to couple with one an-
other, has led to increasingly sophisticated devices and
dynamics. Generalizations of the basic ring resonator
have been used to demonstrate associative memories,4–6

bistability,7 flip-flop operation,8 controlled competitive
dynamics,9 self-organized feature extraction,10,11 and
topology-preserving feature mappings.12

These more complicated resonator configurations are
in some ways reminiscent of analog electronic circuits.
Beams of light couple with one another in nonlinear ele-
ments, transferring energy and phase. As the circuits
become more complex, predicting their steady-state opera-
ting points, and their dynamics, becomes more difficult.
As is the case with electronic circuits it is desirable to
have a set of analytical tools for predicting the behav-
ior of a given circuit. This paper is devoted to the de-
velopment of such a set of tools and their application to
two representative circuits: the flip-flop8 and the feature
extractor.10,11

The photorefractive flip-flop was demonstrated with
the configuration shown schematically in Fig. 1(a). Two
multimode rings are photorefractively pumped by the in-
put signal. The rings are competitively coupled in addi-
tional photorefractive loss media: part of the energy in
each ring serves as a loss pump for the other ring. The
result is that there are two equivalent asymmetric states
corresponding to flip-flop operation: ring 1 on with ring
2 off, or ring 2 on with ring 1 off. There are also four
other possible states: both rings on with equal intensi-
ties, both rings on with unequal intensities (ring 1 or ring
2 at higher intensity), and both rings off. The on state
refers to the presence of a high-intensity steady-state os-
cillation, and the off state refers to the intensity in that
0740-3224/95/061036-12$06.00
ring being zero. Because the two rings are equivalent,
either the left or the right ring may be assumed to be
ring number 1. All six possible states may or may not
be temporally stable. Below we analyze the stability of
this circuit, using a plane-wave model of the photorefrac-
tive interactions.13 The flip-flop constructed with optical
resonators is more complicated than its electronic coun-
terpart for several reasons. First, the steady states of
the flip-flop correspond to parameter regimes where pho-
torefractive two-beam coupling is nonlinear. It is nec-
essary to account explicitly for the nonlinearity when
analyzing the optical circuit. Second, because the opti-
cal circuit is much larger than the wavelength of the light
there is a round-trip resonance condition Lyl ­ m, with
m an arbitrary integer. To avoid sensitivity to Lyl the
resonators discussed here incorporate multimode fiber so
that they support a large number of transverse modes
(,10,000). The effective cavity length depends on the
transverse mode that is due to the modal dispersion of
the fiber. Because the field in the resonator is free to
choose, it will choose a transverse mode that puts it on
resonance with the cavity. We will therefore assume the
cavity to be on resonance and will describe the correspond-
ing resonator mode as a single, albeit spatially compli-
cated, mode. The assumption of on-resonance oscillation
allows us to model the photorefractive coupling coefficient
as purely real in the analysis that follows.

Two flip-flop configurations are studied below. The
case of separate gain media is shown in Fig. 1(a), and
the case of shared gain media is shown in Fig. 1(b). It
turns out that the stability of these two configurations is
considerably different. Sharing of the gain medium pro-
vides additional competitive coupling between the rings
that serves to stabilize the flip-flop. This is true provided
that there is no direct coupling between the spatially un-
correlated beams in the two rings.

The photorefractive feature extractor was demon-
strated by use of the configuration shown schematically
in Fig. 2(a).10 Two multimode rings with a shared gain
medium are photorefractively pumped by the input sig-
nals. In this case the input is not a constant beam but
1995 Optical Society of America
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Fig. 1. Photorefractive flip-flop: (a) separate gain media and
(b) shared gain media. R is the cavity reflectivity and a is the
fraction of the oscillating energy that is diverted into the loss
pumps.

Fig. 2. Feature extractor: (a) experimental geometry with re-
flexive coupling in each ring and (b) simplified model.

rather a superposition of spatially and temporally orthog-
onal features. For example the input signals may be spa-
tial patterns with different optical carrier frequencies10 or
spatial patterns that are presented at different times.11

For convenience, different temporal modes will be referred
to below simply as different frequencies. The resonator
dynamics result in each of the input features’ becoming
temporarily correlated with spatially orthogonal reso-
nator modes. As with the flip-flop, multimode rings are
used to avoid sensitivity to the cavity resonance condition.
However, the input signals are free to choose orthogonal
resonator modes in the same ring. A useful mapping
of input signals onto resonator modes is obtained only
when the resonator modes are intensity, not just field,
orthogonal. The additional photorefractive couplings
in Fig. 2(a) prevent two input signals from choosing
the same ring. A portion of the oscillating energy is
coupled out of each ring and then reflexively coupled14

back into the same ring. The excess loss that is due to
the reflexive coupling is minimized when there is only
one temporal signal in each ring. The result is that the
circuit is driven toward a state where each signal chooses
a different ring. We will therefore model the feature
extractor by using the simplified configuration shown in
Fig. 2(b). Each multimode ring with reflexive coupling
is represented as a single-mode ring, with no additional
coupling. Analysis of this configuration shows that the
feature extractor is unconditionally stable.

Analysis of these circuits will be based on perturba-
tion theory. First the possible steady states are cat-
egorized, and dispersion relations for the evolution of
perturbations about the steady states are derived. The
dispersion relations are valid for arbitrary circuit param-
eters, but they will be analyzed in the limit of large pas-
sive cavity losses and large small-signal gain and loss.
These limits correspond to the experimental demonstra-
tions of the flip-flop8 and the feature extractor.10 In
some cases the steady-state operating points correspond
to nonzero values of both pump and resonator fields.
This means that the fields vary with position in the pho-
torefractive medium. A transfer function analysis based
on the assumption of undepleted pumps15 is therefore not
applicable. It is necessary to account for the propaga-
tion of fluctuations on both interacting beams through
the medium. The method used is based on one devel-
oped previously for the analysis of various four-wave mix-
ing geometries.16 In the case of two-beam coupling it is
convenient to systematize the algebra by deriving transfer
matrices for the perturbations. This is done in Section 2.
The transfer matrices are applied to the flip-flop with
separate gain medium in Section 3 and to the flip-flop
with shared gain media in Section 4. In the case of the
feature extractor the analysis is tedious because of the
large number of interacting fields. It turns out to be
more convenient to analyze the possible steady states
separately, instead of deriving general transfer matrices.
The case of a single ring pumped by two input signals is
analyzed in Section 5, and two signals pumping two rings
is analyzed in Section 6. The results of the analysis are
discussed in Section 7.

2. DERIVATION OF TRANSMISSION
MATRICES FOR PERTURBATIONS
The dynamics of two-beam coupling in a photorefractive
medium are described by the following set of equations13:

≠r
≠x

­ np , (1a)

≠p
≠x

­ 2npr , (1b)
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where r and p are amplitudes of resonator and pumping
beams, respectively, n is the amplitude of the grating, G

is the coupling constant, t / 1yIT is the characteristic
relaxation time of the medium, and IT ­ jrj2 1 jpj2 is the
sum of intensities of the interacting beams.

In the case of a purely real coupling constant G the
stationary solution may be assumed real without loss of
generality. Output intensities of the resonator and the
pump beams are connected to their input intensities by
the relations17

jr0j2out ­ jr0j2inM , (2a)

jp0j2out ­ jp0j2inM exps2Gd , (2b)

M ­
1 1 y

y 1 exps2Gd
, (2c)

where y ­ jr0yp0j2in is the input beam intensity ratio. For
convenience the length of the medium has been set equal
to 1 in this and all subsequent formulas. We may di-
mensionalize all the results below by making the con-
version G ! Gl, where l is the length of the medium.
Equations (2) allow for any sign of G. Below we use the
notation G ; GG , M ; G for G . 0 (when a resonator
beam experiences gain) and G ; 2GL, M ; L for G , 0
(when it experiences loss).

Arbitrary complex amplitude perturbations about this
stationary state can be separated into purely real and
purely imaginary ones, and their evolution can be de-
scribed independently.18 Below we restrict ourselves to
consideration of purely real perturbations:

rsx, td ­ r0sxd 1 Refdrsxdexpsftdg , (3a)

psx, td ­ p0sxd 1 Refdpsxdexpsftdg , (3b)

where f is the complex frequency.
Linearizing system (1) with respect to dr and dp

around stationary solution (2) and solving it allows one to
obtain a transmission matrix that describes propagation
of perturbations through the medium"
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where the matrix elements are given by the relations
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An analogous 3 3 3 matrix describes the propagation of
perturbations in the case of a pumping beam p coupling
with two resonator beams r1 and r2 that do not directly
couple with each other and have spatially uncorrelated
amplitudes. The equations of motion are an evident gen-
eralization of Eqs. (1):
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Here as in Eqs. (1) r1, r2 and p are amplitudes of reso-
nator and pumping beams, respectively, n1 and n2 are
amplitudes of the gratings, G is the coupling constant, t /

1yIT is the characteristic relaxation time of the medium,
and IT ­ jr1j2 1 jr2j2 1 jpj2. The stationary solution of
Eqs. (6) is

jr10j2out ­ jr10j2inM , (7a)

jr20j2out ­ jr20j2inM , (7b)

jp0j2out ­ jp0j2inM exps2Gd , (7c)

M ­
1 1 y

y 1 exps2Gd
, (7d)

y ­ y1 1 y2 , (7e)

where y1 ­ jr10yp0j2in, y2 ­ jr20yp0j2in.
Linearizing Eqs. (6) around this stationary state gives,

after some algebra, the following 3 3 3 transmission ma-
trix for the perturbations:

264dr1

dr2
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, (8)
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Here both the elements of the 2 3 2 transmission matrix
T s2d, given by Eqs. (5) and the parameter M, described by
Eq. (7d) depend on the argument y ­ y1 1 y2.

3. FLIP-FLOP WITH SEPARATE
GAIN VOLUMES
Consider the photorefractive flip-flop circuit depicted
schematically in Fig. 1(a). It consists of two rings, which
will be referred to subsequently as ring 1 and ring 2. The
rings are equivalent, so either the left or the right ring
may be considered to be ring 1. Each of the rings con-
tains a gain crystal, whose properties in the stationary
state are characterized by gain coefficient Gs1d or Gs2d,
respectively, and also a loss crystal characterized by loss
coefficient Ls1d or Ls2d, where both the gain and the loss
coefficients are described by Eqs. (2). Specifying reso-
nator yG2 at the entrance to the gain crystal in both
rings determines both their normalized output intensi-
ties Gs1dyG1 and Gs2dyG2 and also the resonator-to-pump
ratios at the entrance to the loss crystals:

yL1 ­
s1 2 adGs1dyG1

aGs2dyG2

, (10a)

yL2 ­
s1 2 adGs2dyG2

aGs1dyG1

. (10b)

Here a is the fraction of the resonator beam intensity
that is diverted. Stationary states are found from the
nonlinear relations

yG1 ­ Gs1dLs1dRs1 2 adyG1 , (11a)

yG2 ­ Gs2dLs2dRs1 2 adyG2 , (11b)

where R is the total accumulated passive losses in the
rings s0 , R , 1d. For convenience we have taken
a, GG , GL, and R to be the same in both rings. In
the experimental realization of this device8 the in-
equalities R ,, 1(large passive losses)expsGG d .. 1 and
expsGLd .. 1(large small-signal gain and loss) were satis-
fied. These inequalities will be assumed be low in order
to simplify the algebra. Equations (11) mean physically
that the net round-trip gain in each ring is unity in
steady state.
Solution of Eqs. (10) and (11) shows that the geometry
has six stationary states. The first state yG1 ­ yG2 ­ 0
corresponds to the situation when both modes are off,
which is always a solution. The next couple of solu-
tions correspond to asymmetric on–off states in which one
mode is on and the other is off. For the solution when
ring 1 is oscillating

yG1 ­ Rs1 2 ad 2 exps2GGd , (12a)

yG2 ­ 0 , (12b)

and vice versa for ring 2 oscillating. Solution (12) exists,
provided that the net small-signal gain in the ring is
greater than unity, i.e., if Rs1 2 adexpsGG d . 1.

Another solution corresponds to a symmetric on state
in which both rings oscillate with the same intensity:

yG1 ­ yG2 ­
Rs1 2 ad

a
exps2GLd 2 exps2GG d . (13)

This solution exists, provided that Rs1 2 adexpsGG 2

GLd . a.
Finally there exist two solutions in which both modes

are on but their intensities are different:

yG ­ exps2GGd
1 2 z

z
, (14a)
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q ­ R
s1 2 ad

a
expsGG 2 GLd , (14c)

where 1 and 2 correspond to the pair yG1, yG2 or vice
versa, depending on in which ring the intensity of the os-
cillating mode is larger. Solution (14) exists in the range

minf1, as3 2 2adg , Rs1 2 adexpsGG 2 GLd

, maxf1, as3 2 2adg . (15)

The dispersion equation for the perturbations around
stationary states is readily obtained with the help of
transmission matrices (4). The derivation proceeds as
follows: consider perturbations dr1 and dr2 to the reso-
nator beams r1 and r2 oscillating in rings 1 and 2, res-
pectively. Let the amplitudes of these perturbations
immediately before the respective beam splitters a be
equal to dr1(before a) and dr2(before a). We start the
derivation by following the perturbation dr1 around ring
1. After passage through the beam splitter the ampli-
tude of the perturbation remaining in ring 1 is dr1(after
ad ­

p
1 2 a dr1(before a). In the loss crystal sL, 1d

(capital letters G and L denote gain and loss crystals and
numerials 1 and 2 denote rings 1 and 2, respectively)
this perturbation serves as a perturbation of the signal.
The pump beam for the loss crystal sL, 1d is supplied
from ring 2, and the input amplitude of the pump beam
perturbation is

p
a dr2(before a). Applying transmission

matrices (4) to the propagation through loss crystal sL, 1d,
one gets dr1[after sL, 1d] ­ T s2d

11 sL, 1d
p

1 2 a dr1(before
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ad 1 T s2d
12 sL, 1d

p
a dr2(before a). Immediately before the

gain crystal sG, 1d the amplitude of the perturbation
is dr1[before sG, 1dg ­

p
R dr1[after sL, 1d]. The pump

beam for gain crystal sG, 1d is supplied externally, and
the input amplitude of its perturbation is zero. The am-
plitude of the perturbation of resonator beam 1 after gain
crystal sG, 1d is then coupled to its input value by the re-
lation [see Eq. (4)] dr1[after sG, 1d] ­ T s2d

11 sG, 1ddr2[before
sG, 1d]. On the other hand, dr1[after sG, 1d] ­ dr1(before
a), so we get the relation

dr1sbefore ad ­ T s2d
11 sG, 1d

p
R

3 fT s2d
11 sL, 1d

p
1 2 a dr1sbefore ad

1 T s2d
12 sL, 1d

p
a dr2sbefore adg . (16)

Repeating the same procedure for the second ring, we
arrive at the identical relation

dr2sbefore ad ­ T s2d
11 sG, 2d

p
R

3 fT s2d
11 sL, 2d

p
1 2 a dr2sbefore ad

1 T s2d
12 sL, 2d

p
a dr1sbefore adg . (17)

The condition that Eqs. (16) and (17) have nonzero solu-
tions dr1 and dr2 results in the dispersion equation

f1 2
p

Rs1 2 ad T s2d
11 sG, 1dT s2d

11 sL, 1dg

3 f1 2
p

Rs1 2 ad T s2d
11 sG, 2dT s2d

11 sL, 2dg

­ RaT s2d
11 sG, 1dT s2d

11 sG, 2d T s2d
12 sL, 1dT s2d

12 sL, 2d . (18)

In the case of symmetric on or off stationary states

T s2d
11 sG, 1d ­ T s2d

11 sG, 2d ; T s2d
11 sGd , (19a)

T s2d
11 sL, 1d ­ T s2d

11 sL, 2d ; T s2d
11 sLd , (19b)

T s2d
12 sL, 1d ­ T s2d

12 sL, 2d ; T s2d
12 sLd , (19c)

and Eq. (18) reduces to

1 2
p

Rs1 2 ad T s2d
11 sGdT s2d

11 sLd ­ 6
p

Ra T s2d
11 sGdT s2d

12 sLd ,

(20)

where plus or minus corresponds to symmetric or anti-
symmetric perturbations, respectively. In the first case
perturbations in both rings have the same sign, and the
intensity in both rings either increases or decreases simul-
taneously. In the second case these perturbations have
opposite sign and so, while the intensity in one ring in-
creases, it decreases in the second ring.

For the symmetric off-stationary state Eq. (20) is fur-
ther simplified to

Rs1 2 adexp

√
GG

1 1 tGf

!
­ 1 . (21)

There is no difference here between symmetric and anti-
symmetric perturbations because the ground state is ex-
actly zero and the relaxation time tL / 1yIT sLd in the
loss crystals is equal to infinity. Solutions of Eq. (21)
have positive real parts of the complex frequency f corre-
sponding to instability of the stationary off state, provided
that Rs1 2 adexpsGG d . 1. In other words, provided that
there is sufficient gain for the circuit to turn on, the off
state is unstable.

For the asymmetric on–off state Eq. (18) splits into two
independent equations for the on and the off rings because
the product T 2

12sL, 1dT s2d
12 sL, 2d turns out to be equal to

zero. The dispersion equation for the on ring yields [in
accordance with Eqs. (12) we assume that ring 1 is on
and ring 2 is off]

ftGs1d ­ 2GG 2 lnfRs1 2 adg . (22)

Note that this solution contains neither the loss coefficient
nor the relaxation time of the loss crystal because loss in
the on ring is determined by the off ring, and there is
no radiation there. Because the on–off stationary state
exists, provided that Rs1 2 adexpsGG d . 1, the on ring is
always stable. Simplification of the dispersion equation
for the off ring results in the relation

p
Rs1 2 ad exp

(
GG

2f1 1 tGs2df g
2

GL

2f1 1 tLs2df g

)
­ 1 .

(23)

Stability of the off ring (negative real part of f) requires
fulfillment of the following inequalities:

GL 1 C . GG , (24a)

tG

tL
.

GG 2 C
GL 1 C

, (24b)

where C ­ 2lnfRs1 2 adg. The first inequality is not re-
strictive, but the second one turns out to be much more
stringent when the passive losses in the ring are large
sR ,, 1d, and that is usually the case. The reason is
that the characteristic relaxation time in a photorefrac-
tive medium is inversely proportional to its illumination.
In the bad-cavity limit discussed here sR ,, 1d, there is
essentially no buildup in the on ring, and so the inten-
sity at the output of the gain crystal in the on ring is at
most equal to the pump intensity. The intensity of the
pumping beam for the loss crystal in the off ring is there-
fore at most equal to the intensity of the signal at the
output of the gain crystal in the on ring divided by pas-
sive losses on its passage from the gain to the loss crystal.
Usually these losses constitute a considerable part of the
total passive losses R, and hence

GL .
tL

tG
sGG 2 Cd 2 C (25)

in order for the flip-flop with separate gain volumes to be
stable.

Inequalities (24) are formally identical to the conditions
that determine the stability of the off state of a single
bistable ring with gain and loss,19 despite the fact that the
physical situation is considerably different. In the case
of the bistable ring with gain and loss one cannot satisfy
Eq. (24b) by simply increasing GL, as doing so would imply
that the on state no longer existed. Rather, the bistable
ring can be stabilized only if the loss is made sufficiently
fast. In the case of the flip-flop GL may be increased as
much as desired without affecting the existence of the
on–off asymmetric state.
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Inequalities (24) allow for a simple physical interpre-
tation in the case of large passive losses, corresponding
to the presence of two different time scales tG and tL in
the system. The first of inequalities (24) corresponds to
the stability of the system with respect to slow pertur-
bations, which change at times of the order of tL, and is
obtained from Eq. (23) in the limit f ­ 0. The second one
corresponds to fast perturbations, which change at times
of the order of

p
Rs1 2 ad exp

"
GG

2s1 1 tGf d

#
­ 1 . (26)

Equation (26) immediately gives GG 2 C # 0 as the nec-
essary condition of stability. The above dispersion equa-
tion shows that perturbations changing at times faster
than the characteristic relaxation time of the loss crystal
do not feel any losses. This fact is well known and has
found application, e.g., in photorefractive novelty filters.15

For the symmetric on state [Eqs. (13)] dispersion
equation (20) for the symmetric perturbations (plus) gives
a stable solution, whereas for the antisymmetric pertur-
bations it reduces to

q exp

"
tGf

1 1 tGf

√
GG

2
2 ln q

!#

­ s1 2 2ad 1 2 exp

"
tLf

1 1 tLf

√
GL

2
1 ln a

!#
, (27)

where q ­ Rs1 2 ada21 expsGG 2 GLd (the stationary
state exists for q . 1). In the experimental limit of
tG ,, tL there are no stable solutions of Eq. (27). Thus
the symmetric on state is unstable. It should be reem-
phasized that this analysis, and the conclusion that
the symmetric on state is unstable, is based on the as-
sumption of large small-signal loss fexpsGLd .. 1g. It is
intuitively clear that in the opposite limit, where GL ! 0,
there is no coupling between the rings, and the symmet-
ric on state is stable.

Finally, investigation of the stability of the asymmetric
on state [Eqs. (14)] shows that the state is also always
unstable for tG ,, tL.

To summarize the results of this section, when the two
rings have separate gain volumes all the stationary states,
including the asymmetric on–off state that corresponds to
flip-flop operation, turn out to be unstable, provided that
the relaxation times in the loss crystals are considerably
larger than those in the gain crystals. The asymmetric
on–off state can be stabilized by increasing the loss cou-
pling until inequality (25) is satisfied.

4. FLIP-FLOP WITH SHARED
GAIN VOLUME
In the case when the rings share a common gain medium
[Fig. 1(b)], the resonator-to-pump-beam ratios at the en-
trance to the loss crystals are given by

yL1 ­
s1 2 adyG1

ayG2

, (28a)

yL2 ­
s1 2 adyG2

ayG1

, (28b)
because both signals receive the same gain G. Stationary
states of this geometry are again given by Eqs. (11), where
Gs1d ­ Gs2d ­ G. Solution of Eqs. (11) and (28) shows
that there are four stationary states that are remarkably
similar to those discussed in Section 3. Thus there exists
the symmetric off state yG1 ­ yG2 ­ 0. There also exist
two asymmetric on–off solutions, in which one ring is on
and the other is off. They are exactly analogous to those
discussed in Section 3 and are described by Eqs. (12).
The final solution is the symmetric on state, where both
rings are on with the same intensity. This solution is
given by

yG1 ­ yG2 ­
1
2

"
Rs1 2 ad

a
exps2GLd 2 exps2GGd

#
, (29)

which differs from Eqs. (13) only by a factor of 2. There
are no asymmetric on solutions similar to Eqs. (14).

The dispersion relation for the perturbations is ob-
tained with the help of transmission matrices (4) for the
loss crystals and of transmission matrix (8) for the gain
crystal and takes the form

f1 2
p

Rs1 2 ad T s3d
11 T s2d

11 sL, 1d 2
p

Ra T s3d
21 T s2d

12 sL, 1dg

3 f1 2
p

Rs1 2 ad T s3d
22 T s2d

11 sL, 2d 2
p

Ra T s3d
12 T s2d

12 sL, 2dg

­ f
p

Rs1 2 ad T s3d
12 T s2d

11 sL, 1d 1
p

Ra T s3d
22 T s2d

12 sL, 1dg

3 f
p

Rs1 2 ad T s3d
21 T s2d

11 sL, 2d 2
p

Ra T s3d
11 T s2d

12 sL, 2dg . (30)

In the case of symmetric on or off states Eq. (30) re-
duces to

1 ­
p

R T s2d
11 sGdf

p
1 2 a T s2d

11 sLd 1
p

a T s2d
12 sLdg (31)

for symmetric perturbations and to

1 ­
p

R exp

"
1

2s1 1 tGf d
ln G

#
3 f

p
1 2 a T s2d

11 sLd 2
p

a T s2d
12 sLdg (32)

for antisymmetric perturbations.
Stability analysis of the symmetric off state gives the

same result as in Section 3; namely, Eq. (30) is further
simplified to Eq. (21), which means that the symmetric
off state is unstable, provided that Rs1 2 adexpsGG d . 1.

For the symmetric on state [Eq. (29)], dispersion
equation (31) for symmetric perturbations gives only
stable solutions, whereas Eq. (32) for antisymmetric per-
turbations simplifies to

exp

"
tGf

1 1 tGf

√
GG

2
2 ln

p
q

!#

­ s1 2 2ad 1 2 exp

"
tLf

1 1 tLf

√
GL

2
2 ln a

!#
, (33)

where q ­ Rs1 2 ada21 expsGG 2 GLd. This equation is
only slightly different from Eq. (27) and analogously has
no stable solutions for tG ,, tL. The symmetric on sta-
tionary state is therefore unstable. As was emphasized
in the case of the flip-flop with separate gain volumes,
the analysis has been based on the assumption of large
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Fig. 3. Single ring pumped by two signals.

small-signal loss. In the limit where GL ! 0 the sym-
metric on state is stable, provided that the two rings have
the same passive losses. When the passive losses are un-
equal, only the ring with lower loss will oscillate.

Finally, consider the asymmetric on–off state. In this
case, as in Section 3, general dispersion equation (30)
splits into two independent equations for the on and the
off rings. Solution of the dispersion equation for the on
ring yields only stable solutions with a decay rate given
by Eq. (22). The dispersion equation for the off ring can
be reduced to

exp

"
tGf

1 1 tGf

√
GG

2
2 ln

p
q

!
1

1
1 1 tLf

GL

2

#
­ 1 , (34)

where q ­ Rs1 2 adexpsGG d (the on–off state exists for
q . 1). Equation (34) has no solutions corresponding to
a positive real part of f. Hence, in contrast to the results
of Section 3, the on–off solution is always stable in the
flip-flop with shared gain volumes.

To summarize, when the two rings have a shared gain
volume and tL .. tG , only the asymmetric on–off state
corresponding to flip-flop operation is stable. The sym-
metric off state is unstable, provided that there is suffi-
cient gain for the circuit to turn on, and the symmetric on
state is unstable, in the investigated limit of large small-
signal loss.

5. FEATURE EXTRACTOR: ONE RING
Before analyzing the feature extractor it is useful to
consider the one-ring circuit shown in Fig. 3. The ring
is pumped by two beams p11 and p22 having differ-
ent frequencies (temporal modes) and spatially uncorre-
lated transverse amplitude distributions. Each of these
pumps can in principle excite oscillating signals in the
ring at its frequency (r11 or r12). The first index refers
to the spatial mode, and the second index refers to the
frequency. We assume that the ring can support oscil-
lations in only a single spatial mode, so these signals
have the same transverse amplitude distributions. This
means that, e.g., resonator mode r12 will scatter off a grat-
ing written by pumping beam p11 and resonator mode r11.
This results in the appearance of pumping beam p12 that
has the frequency of pumping beam p22 but the spatial
amplitude distribution of pumping beam p11. The input
amplitude of this beam is zero, but it is generated in-
side the photorefractive medium. Analogously, readout
of the grating written by pump p22 with resonator mode
r12 by resonator mode r11 results in the generation of
pumping beam p21, which has the frequency of pump-
ing beam p11 but the spatial amplitude distribution of
pumping beam p22.

The system of equations describing the evolution of
these fields inside the photorefractive medium is

≠r11

≠x
­ n11p11 1 n12p21 , (35a)

≠r12

≠x
­ n11p12 1 n12p22 , (35b)

≠p11

≠x
­ 2np

11r11 , (35c)

≠p12

≠x
­ 2np

11r12 , (35d)

≠p21

≠x
­ 2np

12r11 , (35e)

≠p22

≠x
­ 2np

12r12 , (35f)√
t

≠

≠t
1 1

!
n11 ­

G

2IT
sr11pp

11 1 r12pp
12d , (35g)√

t
≠

≠t
1 1

!
n12 ­

G

2IT
sr11pp

21 1 r12pp
22d , (35h)

where nij is the amplitude of the refractive-index grat-
ing that couples resonator spatial mode i with pump
spatial mode j. In the one-ring geometry there is only
one resonator spatial mode si ­ 1d and two pump spa-
tial modes sj ­ 1, 2d. G and t / IT

21 are the coupling
coefficient and the relaxation time, respectively, where
IT ­

P
ij jrij j2 1 jpij j2 is the total illumination of the crys-

tal. The boundary conditions for system (35) are

p11,in ­ ps0d
11,in , (36a)

p22,in ­ ps0d
22,in , (36b)

p12,in ­ p21,in ­ 0 , (36c)

r11,out

p
R ­ r11,in , (36d)

r12,out

p
R ­ r12,in , (36e)

where R is the total passive loss in the ring s0 , R , 1d.
It should be emphasized that Eqs. (36d) and (36e) are mu-
tually consistent only when the frequency difference be-
tween the pump signals is much less than cyL. When
this is not the case, the boundary conditions should in
principle include a round-trip phase for one of the signals.
Strictly speaking, neglecting this phase means that we
are considering signals with the same frequency but pre-
sented at different times. As inclusion of the round-trip
phase would serve only to strengthen the competition be-
tween signals, the analysis presented below corresponds
to a worst-case situation.

The stationary solution of interest of Eqs. (35) and (36)
corresponds to the situation when only one frequency (say,
r11) oscillates in the ring. In this case p12 ­ p21 ­ 0,
p22 ­ ps0d

22,in ­ constant, whereas for p11 and r11 one gets
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jr11j2out ­ jr11j2inG , (37a)

jp11j2out ­ jp11j2inG expsGnd , (37b)

G ­
1 1 y

y 1 exps2Gnd
, (37c)

Gn ­ G
1 1 y

1 1 y 1 m
, (37d)

where Gn is the normalized coupling constant, y ­
jr11yp11j

2
in, m ­ jp22yp11j

2
in, and the value of y is found

from the stationary solution to be equal to

y ­ R 2 exps2Gnd . (38)

The stationary solution exists for R . exps2Gnd.
To investigate stability we proceed as before and rep-

resent all fields a ­ hrij , pij j in the form

asx, td ­ as0dsxd 1 Refdasxdexpsftdg . (39)

When Eqs. (35) are linearized about the stationary so-
lution they split into two independent sets. The first set
describes perturbations to fields that have nonzero val-
ues in the stationary state:

ddr11

dx
­ dn11ps0d

11 1 n
s0d
11 dp11 , (40a)

ddp11

dx
­ 2dn11rs0d

11 2 n
s0d
11 dr11 , (40b)

dn11 ­
G

2I s0d
T s1 1 tf d

3

"
rs0d

11 dp11 1 ps0d
11 dr11 2 rs0d

11 ps0d
11

dIT

I s0d
T

#
,

(40c)

dp11,in ­ 0 , (40d)

dr11,out

p
R ­ dr11,in , (40e)

and the second set describes evolution of the fields that
were equal to zero:

ddr12

dx
­ dn12ps0d

22 1 n
s0d
11 dp12 , (41a)

ddp12

dx
­ 2n

s0d
11 dr12 , (41b)

ddp21

dx
­ 2dn12rs0d

11 , (41c)

dn12 ­
G

2I s0d
T s1 1 tf d

fdr12ps0d
22 1 rs0d

11 dp21g , (41d)

dp12,in ­ dp21,in ­ 0 , (41e)

dr12,out

p
R ­ dr12,in . (41f)

Note that, because contributions to dp22 first appear
at second order in the perturbations, p22 ­ ps0d

22 both in
Eqs. (40) and in Eqs. (41).
Solution of Eqs. (40) yields

dr11,out ­ Tdr11,in , (42a)

T ­
expsGny2d

p
G f1 1 y expsGndg

fy expsGny2d 1 Bg

1
2m

1 1 m
yBI , (42b)

B ­ exp

"
1

1 1 tf
sln G 2 Gny2d

#
, (42c)

I ­
Gn exps2Gny2d

2s1 1 tf d

p
G

Z 1

0
dx exp

√√√
2

tf
1 1 tf

3

(
Gn

2
x 1 lnfy 1 exps2Gnxdg

)!!!
. (42d)

Applying the boundary condition for dr11 to Eqs. (42),
one gets T

p
R ­ 1. This equation has no solutions with

a positive real part of f. Indeed, let us assume that
such solutions exist. For Re f . 0 integral I is small
compared with the first term in the expression for T. The
remaining part yields

tf ­ 2
2

Gn
sGn 1 ln Rd . (43)

Because in all the range of existence of the stationary so-
lution the right-hand side of Eq. (43) is less than zero,
we come to a contradiction. Hence the dispersion equa-
tion (43) has only stable roots. General formulas for the
damping rate are slightly cumbersome, but Eq. (43) is
valid for values of tf such that jtf j # 1.

By introducing the functions

r ­ dr12yrs0d
11 , (44a)

z1 ­
1

1 1 tf
frps0d2

22 1 dp21ps0d
22 g , (44b)

z2 ­ rps0d2
11 2 dp12ps0d

11 , (44c)

we can put Eqs. (41) into the form

dr
dx

­
G

2I s0d
T

sz1 2 z2d , (45a)

dz1

dx
­

G

2I s0d
T s1 1 tf d

hfrs0d2
11 2 ps0d2

22 gz1 1 ps0d2
22 z2j , (45b)

dz2

dx
­

G

2I s0d
T

hps0d2
11 z1 2 fps0d2

11 1 rs0d2
11 gz2j . (45c)

The boundary conditions for Eqs. (45) are rout ­ rin, z1,in ­
rinp2

22,in, and z2,in ­ rinp2
11,in.

At the instability threshold sf ­ 0d Eqs. (45) yield

rout 2 rin ­
Z 1

0
dxsz1 2 z2d , (46a)

sz1 2 z2d ­ sz1 2 z2din exp

√
2

G

2
1 1 y 2 m
1 1 y 1 m

x

!
. (46b)

The boundary condition for r, rout ­ rin can be satis-
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fied only if sz1 2 z2din ­ 0, which in turn implies that
p11,in ­ p22,in. For small growth rates f the solution of
Eqs. (45) yields tf / sp2

22,in 2 p2
11,ind. Hence the station-

ary solution corresponding to the oscillation of only one
signal in the ring turns out to be stable if the input in-
tensity of the corresponding pump is larger than that
of the second pump and to be unstable in the opposite
case. Physically this means that, even though both in-
put signals may be above threshold for driving oscillation
in the ring, only the temporal mode corresponding to the
stronger of the two signals will oscillate. The weaker sig-
nal is completely suppressed.

6. FEATURE EXTRACTOR: TWO RINGS
The feature extractor shown in Fig. 2(b) is described by

≠rij

≠x
­

X
k­1,2

nikpkj si, j ­ 1, 2d , (47a)

≠pij

≠x
­ 2

X
k­1,2

np
kirkj si, j ­ 1, 2d , (47b)√

t
≠

≠t
1 1

!
nij ­

G

2IT

X
k­1,2

rikpp
jk si, j ­ 1, 2d , (47c)

where pij and rij are pumping and resonator beams,
respectively, the first index denotes the spatial mode,
and the second index denotes the temporal mode. The
boundary conditions for Eqs. (47) are

p11,in ­ ps0d
11,in , (48a)

p22,in ­ ps0d
22,in , (48b)

p12,in ­ p21,in ­ 0 , (48c)

rij ,out

p
Ri ­ rij ,in si, j ­ 1, 2d , (48d)

where Risi ­ 1, 2d are the passive losses in the two rings.
In the stationary state Eqs. (47) have the following inte-
grals of motion:

c1 ­ r2
11 1 r2

21 1 p2
11 1 p2

21 , (49a)

c2 ­ r2
12 1 r2

22 1 p2
12 1 p2

22 , (49b)

c3 ­ r11r12 1 r21r22 1 p11p12 1 p21p22 , (49c)

where, without loss of generality, the stationary solution
has been taken to be purely real.

Consider the possible situation in which modes at only
one frequency (say, 1) oscillate in both rings. This means
that r12 ­ r22 ­ 0 and p12 ­ p21 ­ 0. The remaining
equations in the stationary state are

dr11

dx
­

G

2IT
r11p2

11 , (50a)

dr21

dx
­

G

2IT
r21p2

11 , (50b)

dp11

dx
­ 2

G

2IT
sr2

11 1 r2
21dp11 . (50c)
Solution of these equations yields

r11,out ­ r11,in

p
G , (51a)

r21,out ­ r21,in

p
G , (51b)

G ­
1

y11 1 y21 1 exps2Gnd
, (51c)

yij ­ srijyp11d2
in , (51d)

Gn ­ G
1

1 1 m
, (51e)

m ­ sp22yp11d2
in . (51f)

The boundary conditions for Eqs. (51) are GR1 ­ 1 for
r11 and GR2 ­ 1 for r22. These conditions can be sat-
isfied simultaneously only if R1 ­ R2. This means that
the solution corresponding to both rings oscillating at the
same frequency has zero region of existence (i.e., it does
not exist from the practical point of view). The only pos-
sible one-frequency solution corresponds to the oscillation
at one frequency in one ring and to the absence of oscilla-
tion in the other ring. Suppose that the oscillating signal
is r11. Steady-state solutions for this case are given by
Eqs. (51) with y21 ­ 0.

To investigate the stability of the stationary solution in
which one frequency oscillates in only one ring we rep-
resent all fields a ­ hrij , pij j in the form of a stationary
solution plus real perturbations, as in Eq. (39), and lin-
earize Eqs. (47). We find that the linearized Eqs. (47)
split into four independent sets. The first two sets de-
scribe perturbations to fields that have nonzero values in
the stationary state and the evolution of perturbations
at the complimentary frequency in the oscillating ring.
These sets of equations are identical to Eqs. (40) and (41)
that were considered in the one-ring case in Section 5.
The same conclusions that were derived there are equally
valid here, namely, that the on ring is stable and that
perturbations at the complimentary frequency in the on
ring have positive growth rates only when the intensity of
the pump corresponding to the complimentary frequency
is larger than that of the pump corresponding to the sta-
tionary solution.

The final two sets of equations for the perturbations are

ddr21

dx
­ dn21ps0d

11 , (52a)

dn21 ­
G

2I s0d
T s1 1 tf d

dr21ps0d
11 , (52b)

dr21,out

p
R2 ­ dr21,in , (52c)

corresponding to the evolution of perturbation at the al-
ready existing frequency in the off ring, and

ddr22

dx
­ dn22ps0d

22 , (53a)

dn22 ­
G

2I s0d
T s1 1 tf d

dr22ps0d
22 , (53b)

dr22,out

p
R2 ­ dr22,in , (53c)

which describe the evolution of perturbations at the com-
plimentary frequency in the off ring.
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Solution of Eqs. (52), which describe the evolution of
perturbations at the already existing frequency in the off
ring, yields

tf ­ 2
lns1yR2d

lnsR1yR2d
. (54)

When the losses in the already oscillating ring are less
than in the off ring sR1 . R2d, the off ring is stable against
perturbations at the already existing frequency.

Solution of Eqs. (53) describing the evolution of pertur-
bations at the complimentary frequency in the off ring
yields

tf ­
mGn 2 lns1yR2d

lns1yR2d
. (55)

Recall that the threshold of existence of the stationary
state [Eqs. (51)] is given by the relation Gn ­ 2ln R1. If
the passive losses R1 and R2 in the rings are of the same
order, and the pumping beam ratio m is not abnormally
large or small, then Eq. (55) yields f . 0 for values of
the nonlinear coupling constant Gn slightly exceeding the
threshold of excitation of the stationary solution. Hence
the second ring is unstable with respect to the growth of
perturbations at the complimentary frequency.

To recap, the analysis thus far shows that the sta-
tionary solution corresponding to oscillation at one fre-
quency in one of the rings may be unstable with respect
to several kinds of perturbation. The instabilities de-
scribed in Eqs. (41) and (52) simply mean that the system
chooses the stationary state such that the frequency of the
stronger pump oscillates in the ring with the lowest losses.
These instabilities do not change the character of this
stationary state. The instability described by Eqs. (53)
corresponding to the excitation of oscillations at the com-
plimentary frequency in the second ring is more inter-
esting. The resulting new stationary solution describes
the situation in which each of the rings oscillates at a dif-
ferent frequency, i.e., the observed behavior of the feature
extractor. Below we analyze the stability of this solution.

Let pump p11 excite resonator mode r11 oscillating in
the first ring and pump p22 excite resonator mode r22 oscil-
lating in the second ring. All other pump and resonator
modes are not excited sp12 ­ p21 ­ r12 ­ r21 ­ 0d. The
stationary intensities of the pump and resonator beams
are described by (there is no summation over the index j
in the following formulas)

r2
jj ,out ­ r2

jj ,inGj sj ­ 1, 2d , (56a)

p2
jj ,out ­ p2

jj ,inGj exps2Gj d sj ­ 1, 2d , (56b)

Gj ­
1

yj 1 exps2Gj d
sj ­ 1, 2d , (56c)

G1 ­ G
1

1 1 m
, (56d)

G2 ­ G
m

1 1 m
, (56e)

where Gj is the normalized coupling constant for each
ring, yj ­ srjjypjj d2

in, m ­ sp22yp11d2
in, and the values of
yj sj ­ 1, 2d are found from the stationary solution to be
equal to

yj ­ Rj 2 exps2Gj d . (57)

To investigate the stability of this stationary solu-
tion we again represent all fields a ­ hrij , pij j in the
form of Eq. (39) and linearize Eqs. (47). The linearized
equations split into two independent sets. The first set
is analogous to Eqs. (40) and describes perturbations to
fields that have nonzero values in the stationary state
sj ­ 1, 2d:

ddrjj

dx
­ dnjjps0d

jj 1 n
s0d
jj dpjj , (58a)

ddpjj

dx
­ 2dnjjrs0d

jj 2 n
s0d
jj drjj , (58b)

dnjj ­
G

2I s0d
T s1 1 tf d

3

"
rs0d

jj dpjj 1 ps0d
jj drjj 2 rs0d

jj ps0d
jj

dIT

I s0d
T

#
. (58c)

Equations (58) describe the evolution of perturbations
in the first ring sj ­ 1d and in the second ring sj ­ 2d that
are coupled by means of perturbation to the total illumi-
nation of the crystal 8IT ­ 2dr11,inrs0d

11,in 1 2dr22,inrs0d
22,in.

The second set of equations describes the evolution of
fields that were equal to zero in the stationary state:

ddr12

dx
­ dn12ps0d

22 1 n
s0d
11 dp12 , (59a)

ddr21

dx
­ dn21ps0d

11 1 n
s0d
22 dp21 , (59b)

ddp12

dx
­ 2dn21rs0d

22 2 n
s0d
11 dr12 , (59c)

ddp21

dx
­ 2dn12rs0d

11 2 n
s0d
22 dr21 , (59d)

dnij ­
G

2s1 1 tf d
frs0d

ii dpji 1 drijps0d
jj g . (59e)

Solution of Eqs. (58) yields"
dr11

dr22

#
out

­ T

"
dr11

dr22

#
in

, (60)

where the elements of the 2 3 2 matrix T are

Tjj ­
expsGjy2d

f1 1 yj expsGj dgGj
fyj expsGjy2d 1 Bj g

1 2
m22j

1 1 m
yj Bj Ij , (61a)

Tij sifij d ­ 22
p

m
1 1 m

p
y1y2 BiIi , (61b)

Bj ­ exp

"
1

1 1 tf

√
ln Gj 2

Gj

2

!#
, (61c)
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Ij ­
Gj exps2Gjy2d

2s1 1 tf d

q
Gj

Z 1

0
dx

3 exp

√√√
2

tf
1 1 tf

(
Gj

2
x 1 lnfyj 1 exps2Gj dg

)!!!
.

(61d)

The dispersion equation takes the form

s
p

R1 T11 2 1ds
p

R2 T22 2 1d 2
p

R1R2 T12T21 ­ 0 . (62)

Equation (62) has only stable sRe f , 0d roots. The proof
of this statement is similar to that carried out in the case
of Eqs. (42). We start by assuming that Eq. (62) has an
unstable solution sRe f . 0d. In this case both integrals
Ij in Eqs. (61) can be neglected in Eq. (62), and the rest
yields

tfj ­ 2
2

Gj
fGj 1 lnsRj dg . (63)

Inasmuch as the conditions for existence of the station-
ary state under investigation are Gj 1 lnsRj d . 0, both
solutions (63) are negative, which leads to a contradic-
tion. Expressions for the damping rates should in gen-
eral be obtained by keeping integrals Ij in Eq. (62) and
are slightly more complex than Eq. (63).

We turn next to the analysis of Eqs. (59). These equa-
tions have marginally stable solutions f ­ 0 when the
input pumping beams are equal: p2

11,in ­ p2
22,in. The

reason for this is that for the degenerate case p2
11,in ­ p2

22,in

Eqs. (47) have a family of stationary solutions such that

r12

r11
­ 2

r21

r22
­ c , (64)

where c is an arbitrary constant. The particular solu-
tion under consideration given by Eqs. (56) is a mem-
ber of this family for the particular choice of c ­ 0. For
any arbitrarily small difference between the intensities
of the input pumps this degeneracy is broken, and solu-
tion of Eqs. (59) yields negative values of f, correspond-
ing to the stability of the stationary state [Eqs. (56)]. To
prove this statement, while avoiding cumbersome formu-
las, we analyze Eqs. (59) in the limit where the difference
between the input pumping beam intensities is small, i.e.,
e ; sp2

22,in 2 p2
11,indyIT ,, 1. We also assume that the

rings have equal passive losses such that R1 ­ R2 ­ R.
Introducing the new functions

y1 ­
dr12

rs0d
11

2
dr21

rs0d
22

, (65a)

y2 ­
dr12

rs0d
11

1
dr21

rs0d
22

, (65b)

and making use of the integral of Eqs. (59),

r11dr12 1 r22dr21 1 p11dp12 1 p22dp21 ­ const. , (66)

one obtains from Eqs. (59)

dy1

dx
­

G

2IT
fsp2

22 2 p2
11dy2 2 tfp2y1g , (67a)

dy2

dx
­

G

2IT
fy1,insp2

22,in 2 p2
11,ind 1 2r2

iny2,in 2 2r2y2g , (67b)
where r2 and p2 are the intensities of the resonator
and the pumping beams, respectively, in the symmet-
ric stationary state [Eqs. (56)], where p2

11,in ­ p2
22,in. The

boundary conditions for Eqs. (67) are y1,out ­ y1,in and
y2,out ­ y2,in.

For exactly equal intensities of the input pumps
Eqs. (67) have marginally stable solutions y2 ­ 0, y1 ­
constant, tf ­ 0. For unequal pumping beam intensi-
ties the solution of Eqs. (67) up to the second order in the
expansion parameter e yields

tf ­ 2
G2

4 lns1yRd

√
p2

22,in 2 p2
11,in

IT

! 2

. (68)

Thus solution (56) turns out to be stable.
To summarize the results of the analysis of the feature

extractor, when the input pumps are of unequal intensity
and the passive losses in the two rings are different, the
desired solution in which one frequency oscillates in one
ring and the other frequency oscillates in the other ring
is the only stable solution. When the two rings have
equal passive losses the situation is identical to that of one
ring discussed in Section 5, and only the stronger input
signal oscillates in the rings. When the two input signals
are equally strong there is a family of marginally stable
solutions given by Eq. (64). The degeneracy is broken as
soon as the input signals become unequal.

7. DISCUSSION
We have analyzed the stability of the flip-flop with sepa-
rate and shared gain volumes. The analysis presented
here considers steady states that are on resonance with
the pump radiation. The analysis has been based on the
assumptions of large passive losses and large small-signal
gain and loss. These assumptions correspond to typi-
cal experimental conditions.8 The assumption of large
passive losses implies further that tL .. tG , because
the photorefractive time constant scales inversely with
the optical intensity. In the case of the flip-flop with
separate gain volumes the desired asymmetric on–off
state is found to be stable, provided that the loss is
large enough to satisfy inequality (25), and all other
stationary states are unstable. In the flip-flop with
a shared gain volume the asymmetric on–off state is
always stable, and all other stationary states are un-
stable. The flip-flop with a shared gain volume is there-
fore to be preferred experimentally.

In the case of the feature extractor the theory quali-
tatively confirms the observed behavior. The only pos-
sible stable state has the incident signals oscillating in
different rings, with zero cross talk. Stability is inde-
pendent of the time constants because, in the model of
Fig. 2(b) that was used for the analysis, there is only one
time constant, that of the gain medium. The experimen-
tal demonstrations of the feature extractor10,11 used the
more complicated configuration of Fig. 2(a), where each
ring is multimode and has reflexive coupling. In the ex-
periments the feature extractor exhibited a small but fi-
nite cross-talk level of approximately 40:1. This level of
cross talk may be due to the multimode nature of the
rings or may be simply a result of finite input correlation
between the signals.20 It was also observed that when
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the input intensities were unequal by more than ,10%
the stronger signal oscillated in both rings. The model
analyzed here is not sufficiently general to permit us to
predict how these experimental details depend on the cir-
cuit parameters. The analysis could in principle be ex-
tended to include the effect of the reflexive coupling and
the multimode nature of the rings, although it appears
that direct numerical simulations are a more appropriate
method of investigating the ultimate performance limita-
tions of this architecture.
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