Andor’s iXon DV860 back illuminated EMCCD camera has single photon detection capability without an image intensifier, combined with greater than 90% QE of a back illuminated sensor. Containing a 128x128 L3Vision™ Frame Transfer CCD sensor from E2V Technologies, it utilizes a unique electron multiplying structure that is built into the silicon. This enables charge from each pixel to be multiplied on the sensor before it is read out, while utilizing the full QE performance of the CCD sensor. This camera is capable of greater than 450 full frames/sec, with much faster speeds available through use of sub-array and/or binning (>10,000 frames/sec). Andor exclusively offers this technology as a complete, software-controlled system for rapid, scientific, digital imaging applications. The system offers up to 10 MHz pixel readout rate and benefits from negligible dark current with unequalled thermoelectric cooling down to –75°C.

• **EMCCD Technology**
 - Ultimate in Sensitivity from EMCCD gain – even single photon signals are amplified above the noise floor.
 - Full QE of CCD chip is harnessed (no intensifier).

• **Variable readout rates up to10 MHz**
 - Quantitative accuracy at all speeds.
 - Slower readout rate for enhanced 16-bit dynamic range.

• **Greater than 450 full frames/sec**
 - Ideal for highly dynamic, low light experiments

• **TE cooling to –75°C and guaranteed hermetic vacuum seal**
 - Minimized dark current without the aggravation or safety concerns associated with LN₂.
 - EMCCD gain is greater at lower temperatures.

• **128x128 Frame Transfer sensor**
 - Ideal for fast, shutterless imaging

• **High dynamic range and 16-bit digitization available**
 - Extended sensor dynamic range (readout speed dependent) and matched digitization for quantization of dim and bright signals.

• **Built-in C-mount compatible shutter**
 - Easy means to record control dark images – excellent for optimization of experimental set-up.

<table>
<thead>
<tr>
<th>Camera Overview</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Pixels</td>
<td>128 x 128</td>
</tr>
<tr>
<td>Pixel Size (WxH; μm)</td>
<td>24 x 24</td>
</tr>
<tr>
<td>Image Area (mm)</td>
<td>3.1 x 3.1</td>
</tr>
<tr>
<td>Active Area pixel well depth (e-, typical)</td>
<td>200,000</td>
</tr>
<tr>
<td>Gain Register pixel well depth (e-, typical)</td>
<td>800,000</td>
</tr>
<tr>
<td>Max Readout Rate (MHz)</td>
<td>10</td>
</tr>
<tr>
<td>Frame Rate (frames per sec)</td>
<td>500 up to ~5,000</td>
</tr>
<tr>
<td>Read Noise (e-)</td>
<td><1 to 62 @ 10 MHz</td>
</tr>
</tbody>
</table>
System Characteristics

- **Pixel Readout Rate (MHz)**
 - 10, 5, 3, 1

- **Linearity (% maximum)**
 - 5

- **Vertical Clock Speed (μs)**
 - 0.1 to 13 (variable)

- **Electron Multiplier Gain (software controlled)**
 - 1 – 1000 times

- **Digitization @ 10, 5, 3 & 1 MHz readout rate**
 - 14-bit (16-bit available @ 1MHz)

- **Dark Current @ -60°C (e-/pix/sec)**
 - ♦ 2

- **Camera window type**
 - Single window with double-sided AR coating – standard for BV model

Noise

- **System Readout Noise (typical; e-)**
 - Typical
 - with Electron Multiplication

 - 10MHz through EMCCD amplifier
 - 62 < 1
 - 5MHz through EMCCD amplifier
 - 45 < 1
 - 1MHz (16-bit) through EMCCD amplifier
 - 22 < 1

Noise & EMCCD Gain

- **Variation of Readout Noise with EMCCD Gain at 10MHz Readout Rate**

Minimum Temperature (°C)

- **Air-cooled (ambient air @ 20 °C)**
 - -65

- **Water-cooled (@ 10 °C, 0.75 l / min)**
 - -75

Quantum Efficiency

- **Peak Quantum Efficiency at -20°C**

<table>
<thead>
<tr>
<th>CCD Type</th>
<th>Minimum</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>82</td>
<td>92.5</td>
</tr>
<tr>
<td>UVB</td>
<td>82</td>
<td>92.5</td>
</tr>
</tbody>
</table>
● Max Frames per sec • full frame rate of 500 frames per sec at 10MHz readout rate and 0.9 µs vertical clock speed
• frame rates up to about 5,000 frames per sec are possible by the selection of smaller sub-arrays and shorter vertical shift speeds.

● Full Frame Rate

<table>
<thead>
<tr>
<th>Readout Rate / MHz</th>
<th>No. frames per sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
</tbody>
</table>

● Power Requirements

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>0.6A</td>
</tr>
<tr>
<td>-12V</td>
<td>0.3A</td>
</tr>
<tr>
<td>+5V</td>
<td>3.0A</td>
</tr>
</tbody>
</table>

● Operating & Storage Conditions

Operating Temperature	0°C to 30°C ambient
Relative Humidity	< 70% (non-condensing)
Storage Temperature	-25°C to 55°C

● Computer Requirements

To handle data transfer rates of 10MHz readout over extended kinetic series, a powerful computer is recommended, e.g:
• 2.4 GHz Pentium (or better)
• 1GB RAM
• Minimum of 10,000rpm hard drive, RAID 0 15,000 rpm preferred for extended kinetic series

Also:
• PCI-compatible computer
• PCI slot must have bus master capability
• Available auxiliary internal power connector
• 32 Mbytes free hard disc

● For complete system use with...

The iXon 60 requires the following controller card:
CCI-22 PCI controller card

The iXon 60 also requires one of the following software options:
Andor Imaging Software – a ready-to-run Windows 95, 98, 2000, ME, NT or XP-based package with rich functionality for data acquisition and processing
Andor-SDK-CCD – a DLL driver and software development kit that let you create your own applications for the Andor camera.
Third party software compatibility – Drivers are available so that the iXon range can be operated through a large variety of third party imaging packages. Contact Andor for further details

The iXon 60 may be used with the following accessories:
C-mount lens
(Other mounts available on request)

Contact Andor for any of your other requirements. (Contact details on back page)
Weight: 3.1 Kg [7 lb 1 oz]

Dimensions in mm unless otherwise indicated.

Note: The clearance from the C-mount face plate to the shutter is 6mm. Please ensure that when fitting a lens, to a system with a built-in shutter, that it does not extend into the housing by more than 5mm.

Note: There are mounting holes (1/4-20UNC) located on three sides of the camera. They are positioned centrally at a distance of 40mm from the front of the front face.
Linearity is measured from a plot of Counts vs. Signal over the 14 or 16 bit dynamic range. Linearity is expressed as a percentage deviation from a straight line fit. This value is not measured on individual systems.

The dark current measurement is averaged over the CCD area excluding any regions of blemishes.

System Readout noise is for the entire system. It is a combination of CCD readout noise and A/D noise. Measurement is for Single Pixel readout with the CCD at a temperature of -50°C and minimum exposure time under dark conditions. Under Electron Multiplying conditions, the effective system readout noise is reduced to sub 1e⁻ levels.

Quantum efficiency of the CCD sensor as measured by the CCD Manufacturer.

The max frames / second for iXon imaging CCDs is the maximum speed at which the device can acquire images in a standard system. Assumes internal trigger mode of operation.

The graph shows the full frame rates possible when reading out the sensor at 10, 5, 3 and 1 MHz pixel readout rates, and using 0.9μs vertical clock speed.

These power requirements are the maximum load that will be drawn from the computer for the camera head and controller card combined.

NOTE – These specifications are subject to change

Ordering Information:

To order this camera quote part number: DV860 x CS – x

de.g. DV860DCS–UVB a back illuminated iXon DV860 camera with 14-bit digitization at 10, 5, 3 and 1MHz readout speeds, EMCCD output amplifier, standard shutter and UV enhanced coating.

Need more information? Contact us at:

<table>
<thead>
<tr>
<th>Office</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Office</td>
<td>(860) 648-1085</td>
<td>(860) 648-1088</td>
</tr>
<tr>
<td>International Office</td>
<td>+44 28 9023 7126</td>
<td>+44 28 9031 0792</td>
</tr>
<tr>
<td>Japanese Office</td>
<td>+81 3 3511 0659</td>
<td>+81 3 3239 8264</td>
</tr>
</tbody>
</table>